New bounds are given for the exponential sum
On donne une majoration nouvelle de la somme trigonométrique
@article{JTNB_2003__15_3_727_0,
author = {Glyn Harman},
title = {Trigonometric sums over primes {III}},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {727--740},
year = {2003},
publisher = {Universit\'e Bordeaux I},
volume = {15},
number = {3},
zbl = {1165.11332},
mrnumber = {2142233},
language = {en},
url = {https://jtnb.centre-mersenne.org/item/JTNB_2003__15_3_727_0/}
}
Glyn Harman. Trigonometric sums over primes III. Journal de théorie des nombres de Bordeaux, Tome 15 (2003) no. 3, pp. 727-740. https://jtnb.centre-mersenne.org/item/JTNB_2003__15_3_727_0/
[1] , , On the distribution of αpk modulo one. Mathematika 38 (1991), 170-184. | Zbl
[2] , , Sur certaines sommes d'exponentielles sur les nombres premiers. Ann. Sci. Ec. Norm. Sup. IV Ser. 31 (1998), 93-130. | Zbl | MR | Numdam
[3] , The distribution of αp2 modulo one. Proc. London Math. Soc. (3) 42 (1981), 252-269. | Zbl
[4] , Trigonometric sums over primes I. Mathematika 28 (1981), 249-254. | Zbl | MR
[5] , Trigonometric sums over primes II. Glasgow Math. J. 24 (1983), 23-37. | Zbl | MR
[6] , Prime numbers in short intervals and a generalized Vaughan identity. Can. J. Math. 34 (1982), 1365-1377. | Zbl | MR
[7] , , On the Waring-Goldbach problem for fourth and fifth powers. Proc. London Math. Soc. (3) 83 (2001), 1-50. | Zbl | MR
[8] , Mean value theorems in prime number theory. J. London Math. Soc. (2) 10 (1975), 153-162. | Zbl | MR
[9] , The Hardy-Littlewood Method second edition. Cambridge University Press, 1997. | Zbl | MR
[10] , Some theorems concerning the theory of primes. Rec. Math. Moscow N.S. 2 (1937), 179-194. | Zbl | JFM
[11] , A new estimation of a trigonometric sum containing primes. Bull. Acad. Sci. URSS Ser. Math. 2 (1938), 1-13. | Zbl | JFM
[12] , On the distribution of αpk modulo one. Glasgow Math. J. 39 (1997), 121-130. | Zbl | MR
[13] , New estimates for Weyl sums. Quart. J. Math. Oxford (2) 46 (1995), 119-127. | Zbl | MR