Nous tentons, dans ce survol, de présenter une structure méconnue : l'algèbre de Lie ARI et son groupe GARI. Puis nous montrons quels progrès elle a déjà permis de réaliser dans l'étude arithmético-algébrique des valeurs zêta multiples et aussi quelles possibilités elle ouvre pour l'exploration du phénomène plus général de /emph{dimorphie numérique}.
This survey presents a novel structure : the Lie algebra ARI along with its group GARI. It then goes on to sketch some of the advances which ARI/GARI made possible in the field of MZV (multiple zeta values) arithmetics, and what promises it holds for the investigation of the related, but much broader phenomenon of /emph{numerical dimorphy}.
@article{JTNB_2003__15_2_411_0, author = {Jean Ecalle}, title = {ARI/GARI, la dimorphie et l'arithm\'etique des multiz\^etas : un premier bilan}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {411--478}, publisher = {Universit\'e Bordeaux I}, volume = {15}, number = {2}, year = {2003}, zbl = {02184608}, mrnumber = {2140864}, language = {fr}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2003__15_2_411_0/} }
TY - JOUR AU - Jean Ecalle TI - ARI/GARI, la dimorphie et l'arithmétique des multizêtas : un premier bilan JO - Journal de théorie des nombres de Bordeaux PY - 2003 SP - 411 EP - 478 VL - 15 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2003__15_2_411_0/ LA - fr ID - JTNB_2003__15_2_411_0 ER -
%0 Journal Article %A Jean Ecalle %T ARI/GARI, la dimorphie et l'arithmétique des multizêtas : un premier bilan %J Journal de théorie des nombres de Bordeaux %D 2003 %P 411-478 %V 15 %N 2 %I Université Bordeaux I %U https://jtnb.centre-mersenne.org/item/JTNB_2003__15_2_411_0/ %G fr %F JTNB_2003__15_2_411_0
Jean Ecalle. ARI/GARI, la dimorphie et l'arithmétique des multizêtas : un premier bilan. Journal de théorie des nombres de Bordeaux, Tome 15 (2003) no. 2, pp. 411-478. https://jtnb.centre-mersenne.org/item/JTNB_2003__15_2_411_0/
[Ap] Irrationalité de ζ(2) et ζ(3). Astérisque 61 (1979), 11-13. | Zbl
,[Bro] Conjectured Enumeration of irreducible Multiple Zeta Values, from Knots and Feynman Diagrams, preprint, Physics Dept., Open University Milton Keynes, MK7 6AA, UK, Nov. 1996.
,[Bor] Three Adventures: Symbolically Discovered Identities for ζ(4n + 3) and like matters, July 14, 1997, Vienna, 9th Intern. Conference on Formal Power Series and Algebraic Combinatoics (available at: www. cecm. sfu. ca /preprints/)
,[C] Démonstration de l'irrationalité de ζ(3) (d'après Apéry). Séminaire de Théorie des Nombres de Grenoble, VI.1-VI.9, 1978.
,[D] On quasi-triangular quasi-Hopf algebras and some groups related to Gal(Q/Q). Leningrad Math. J. 2 (1991), 829-860. | MR | Zbl
,[Eu] Opera Omnia, Ser.1, Vol XV, Teubner, Berlin, 1997, pp 217-267.
,[E1] Théorie des invariants holomorphes. PhD, Orsay, 1974. The first part appeared in Journ. Math. Pures et Appl. 54 (1974).
,[E2] Les fonctions résurgentes, Vol.1,2,3. Publ. Math. Orsay, 1981-1985. | Zbl
,[E3] Weighted products and parametric resurgence. in: Méthodes résurgentes, Travaux en Cours, 47, pp 7-49, 1994, Ed. L.Boutet de Monvel. | MR | Zbl
,[E4] A Tale of Three Structures: the Arithmetics of Multizetas, the Analysis of Singularities, the Lie algebra ARI. To appear in the Proceedings of the Mai 2001 Groningen Workshop on Singularities and Stokes Phenomena. | MR | Zbl
,[E5] ARI/GARI, Dimorphy, and Multizetas: soon available on my Orsay WEB page.
,[E6] Six lessons on the canonical-explicit decomposition of multizetas into irreducibles, based on a DEA course delivered at Orsay in May-June 2003; to be submitted to the Ann. Toulouse ; soon on my Orsay WEB page.
,[G1] Polylogarithms in arithmetic and geometry. Proc. ICM-94, Zurich, 1995, pp. 374-387 | MR | Zbl
,[G2] Multiple polylogarithms, Cyclotomy and Modular Complezes. Math. Research Letters 5 (1998), 497-515. | MR | Zbl
,[K] Lie Superalgebras. Adv. Math. 26 (1977), 8-96 | MR | Zbl
,[MP] Lyndon words, polylogarithms and the Riemann ζ function. submitted to Disc. Math. | Zbl
, ,[R] Propriétés diophantiennes des valeurs de la fonction zêta de Riemann aux entiers impairs. Thèse, Caen, 2001.
,[S] The theory of Lie superalgebras. An introduction. Springer, 1979. | MR | Zbl
,[Z] Values of Zeta Functions and their Applications. First European Congress of Mathematics, Vol. 2, 427-512, Birkhäuser, Boston, 1994. | MR | Zbl
,