Soit un objet algébrique (par exemple une courbe ou un revêtement) défini sur et de corps des modules un corps de nombres . Il est bien connu que n’admet pas nécessairement de -modèle. En utilisant deux résultats récents dus à P. Dèbes, J.-C. Douai et M. Emsalem nous donnerons un majorant pour le degré d’un corps de définition de sur . Dans une deuxième partie, nous donnerons des conditions suffisantes sur l’ordre de Aut() pour que admette un -modèle.
Let be an algebraic object (e.g. a curve or a cover) defined over and of field of moduli an algebraic number field . It is well known that does not necessarily admit a -model. Using two recent results due to P. Dèbes, J.-C. Douai and M. Emsalem we shall give a bound from above for the degree of a field of definition of over . In the second part, we shall give a sufficient condition on the order of Aut() for to have a -model.
@article{JTNB_2003__15_1_45_0, author = {Geoffroy Derome}, title = {Corps de d\'efinition et points rationnels}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {45--55}, publisher = {Universit\'e Bordeaux I}, volume = {15}, number = {1}, year = {2003}, zbl = {1073.14520}, mrnumber = {2019000}, language = {fr}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_45_0/} }
Geoffroy Derome. Corps de définition et points rationnels. Journal de théorie des nombres de Bordeaux, Tome 15 (2003) no. 1, pp. 45-55. https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_45_0/
[1] On the theory of theta functions, the moduli of abelian varieties, and the moduli of curves. Ann. of Math. 75 (1962), 342-381. | MR | Zbl
,[2] On the Galois extensions of the maximal cyclotomic field. Math. USSR Izv. 14 (1980), 247-256. | Zbl
,[3] Finiteness results in descent theory. J. London Math. Soc., à paraître. | Zbl
, ,[4] Algebraic covers, field of moduli versus field of definition. Ann. Sci. École Norm. Sup. (4) 30 (1997), 303-338. | Numdam | MR | Zbl
, ,[5] On fields of moduli of curves. J. Algebra 211 (1999), 42-56. | MR | Zbl
, ,[6] Quelques aspects des surfaces de Riemann. Progress in Mathematics, 77. Birkhäuser Boston, Inc., Boston, MA, 1989. | MR | Zbl
,[7] Fermat's quartic curve and the tetrahedron. Extremal Riemann surfaces (San Francisco, CA, 1995), 43-62, Contemp. Math., 201, Amer. Math. Soc., Providence, RI, 1997. | MR | Zbl
, ,[8] A, On the field of rationality for an abelian variety. Nagoya Math. J. 45 (1971), 167-178. | MR | Zbl
[9] The arithmetic of elliptic curves. Graduate Texts in Mathematics, 106. Springer-Verlag, New York, 1986. | MR | Zbl
,[10] The field of definition of a variety. Amer. J. Math. 78 (1956), 509-524. | MR | Zbl
,[11] The "obvious" part of Belyi's theorem and Riemann surfaces with many automorphisms. Geometric Galois actions, 1, 97-112, London Math. Soc. Lecture Note Ser., 242, Cambridge Univ. Press, Cambridge, 1997. | MR | Zbl
,