Points de hauteur bornée, topologie adélique et mesures de Tamagawa
Journal de théorie des nombres de Bordeaux, Tome 15 (2003) no. 1, pp. 319-349.

Si V est une variété algébrique projective sur un corps de nombres dont les points rationnels sont denses pour la topologie de Zariski, il est naturel de munir V d’une hauteur et d’étudier de manière asymptotique les points de hauteur bornée sur V. Le but de ce texte est de faire le survol d’un programme initié par Manin visant à interpréter de façon géométrique ce comportement.

Let V be a projective algebraic variety over a number field such that the rational points of V are Zariski dense. It is natural to equip V with a height and to study the asymptotic behavior of the points of bounded height on V. The purpose of this text is a survey of the program started by Manin which proposes an interpretation of this behavior in terms of the geometry of V.

@article{JTNB_2003__15_1_319_0,
     author = {Emmanuel Peyre},
     title = {Points de hauteur born\'ee, topologie ad\'elique et mesures de {Tamagawa}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {319--349},
     publisher = {Universit\'e Bordeaux I},
     volume = {15},
     number = {1},
     year = {2003},
     zbl = {1057.14031},
     mrnumber = {2019019},
     language = {fr},
     url = {https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_319_0/}
}
TY  - JOUR
AU  - Emmanuel Peyre
TI  - Points de hauteur bornée, topologie adélique et mesures de Tamagawa
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2003
SP  - 319
EP  - 349
VL  - 15
IS  - 1
PB  - Université Bordeaux I
UR  - https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_319_0/
LA  - fr
ID  - JTNB_2003__15_1_319_0
ER  - 
%0 Journal Article
%A Emmanuel Peyre
%T Points de hauteur bornée, topologie adélique et mesures de Tamagawa
%J Journal de théorie des nombres de Bordeaux
%D 2003
%P 319-349
%V 15
%N 1
%I Université Bordeaux I
%U https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_319_0/
%G fr
%F JTNB_2003__15_1_319_0
Emmanuel Peyre. Points de hauteur bornée, topologie adélique et mesures de Tamagawa. Journal de théorie des nombres de Bordeaux, Tome 15 (2003) no. 1, pp. 319-349. https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_319_0/

[Ar] S.J. Arakelov, Theory of intersections on the arithmetic surface. Proceedings of the international congress of mathematicians, Vol. 1 (Vancouver, 1974), Canad. Math. Congress, Montréal, 1975, pp. 405-408. | MR | Zbl

[Art] E. Artin, Über eine neue Art von L-Reihen. Abh. Math. Semin. Univ. Hamburg 3 (1924), 89-108. | JFM

[Ba] V.V. Batyrev, The cone of effective divisors of threefolds. Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989), Contemp. Math., vol. 131, Part 3, Amer. Math. Soc., Providence, 1992, pp. 337-352. | MR | Zbl

[BM] V.V. Batyrev, Y.I. Manin, Sur le nombre des points rationnels de hauteur bornée des variétés algébriques. Math. Ann. 286 (1990), 27-43. | MR | Zbl

[BT1] V.V. Batyrev, Y. Tschinkel, Rational points of bounded height on compactifications of anisotropic tori. Internat. Math. Res. Notices 12 (1995), 591-635. | MR | Zbl

[BT2] _, Rational points on some Fano cubic bundles. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), 41-46. | MR | Zbl

[BT3] ____, Height zeta functions of toric varieties. J. Math. Sci. 82 (1996), n° 1, 3220-3239. | MR | Zbl

[BT4] ____, Manin's conjecture for toric varieties. J. Algebraic Geom. 7 (1998), n° 1, 15-53. | MR | Zbl

[BT5] _____, Tamagawa numbers of polarized algebraic varieties. Nombre et répartition de points de hauteur bornée, Astérisque, vol. 251, SMF, Paris, 1998, pp. 299-340. | MR | Zbl

[Bir] B.J. Birch, Forms in many variables. Proc. Roy. Soc. London 265A (1962), 245-263. | MR | Zbl

[BR] M. Borovoi, Z. Rudnick, Hardy-Littlewood varieties and semi-simple groups. Invent. math. 119 (1995), 37-66. | EuDML | MR | Zbl

[BGS] J.-B. Bost, H. Gillet, C. Soulé, Heights of projective varieties and positive Green forms. J. Amer. Math. Soc. 7 (1994), 903-1027. | MR | Zbl

[Bo] D. Bourqui, Fonction zêta des hauteurs des surfaces de Hirzebruch dans le cas fonctionnel. J. Number Theory 94 (2002), 343-358. | MR | Zbl

[Bre1] R. De La Bretèche. Compter des points d'une variété torique, J. Number theory 87 (2001), 315-331. | MR | Zbl

[Bre2] _____, Nombre de points de hauteur bornée sur les surfaces de Del Pezzo de degré 5. Duke Math. J. 113 (2002), n° 3, 421-464. | MR | Zbl

[BV] M. Brion, M. Vergne, Arrangement of hyperplanes. I: rational functions and Jeffrey-Kirwan residue. Ann. Sci. École Norm. Sup. (4) 32 (1999), 715-741. | EuDML | Numdam | MR | Zbl

[Bro] N. Broberg, Rational points on cubic surfaces. Rational points on algebraic varieties, Progress in Math., vol. 199, Birkhaüser, Basel, 2001, pp. 13-35. | Zbl

[CLT1] A. Chambert-Loir, Y. Tschinkel, Points of bounded height on equivariant compactifications of vector groups, I. Compositio Math. 124 (2000), n° 1, 65-93. | MR | Zbl

[CLT2] ____, Points of bounded height on equivariant compactifications of vector groups, II. J. Number Theory 85 (2000), n° 2, 172-188. | MR | Zbl

[CLT3] ____, On the distribution of points of bounded height on equivariant compactifications of vector groups. Invent. Math. 148 (2002), n° 2, 421-452. | MR | Zbl

[CTS1] J.-L. Colliot-Thélène, J.-J. Sansuc, Torseurs sous des groupes de type multiplicatif; applications à l'étude des points rationnels de certaines variétés algébriques. C. R. Acad. Sci. Paris Sér. I Math. 282 (1976), 1113-1116. | MR | Zbl

[CTS2] _____, La descente sur les variétés rationnelles. Journées de géométrie algébrique d'Angers (1979) (A. Beauville, ed.), Sijthoff & Noordhoff, Alphen aan den Rijn, 1980, pp. 223-237. | MR | Zbl

[CTS3] ____, La descente sur les variétés rationnelles, II. Duke Math. J. 54 (1987), n° 2, 375-492. | MR | Zbl

[Co] D. Cox, The homogeneous coordinate ring of a toric variety. J. Algebraic Geom. 4 (1995), 17-50. | MR | Zbl

[De1] P. Deligne, La conjecture de Weil I.. Publ. Math. I.H.E.S. 43 (1973), 273-307. | EuDML | Numdam | MR | Zbl

[Delz] T. Delzant, Hamiltoniens périodiques et images convexes de l'application moment. Bull. Soc. Math. France 116 (1988), 315-339. | EuDML | Numdam | MR | Zbl

[Dr] P.K.J. Draxl, L-Funktionen algebraischer Tori. J. Number Theory 3 (1971), 444-467. | MR | Zbl

[FMT] J. Franke, Y.I. Manin, Y. Tschinkel, Rational points of bounded height on Fano varieties. Invent. Math. 95 (1989), 421-435. | EuDML | MR | Zbl

[HW] G.H. Hardy, E.M. Wright, An introduction to the theory of numbers, 3rd ed.. Oxford, Clarendon Press, 1954. | MR | Zbl

[HB1] D.R. Heath-Brown, The density of zeros of forms for which weak approximation fails. Math. Comp. 59 (1992), 613-623. | MR | Zbl

[HB2] _____, Counting rational points on cubic surfaces. Nombre et répartition de points de hauteur bornée, Astérisque, vol. 251, SMF, Paris, 1998, pp. 13-30. | MR | Zbl

[Lan] R.P. Langlands, On the functional equations satisfied by Eisenstein series. Lecture Notes in Math., vol. 544, Springer-Verlag, Berlin, Heidelberg and New York, 1976. | MR | Zbl

[Ma] Y.I. Manin, Notes on the arithmetic of Fano threefolds. Compositio Math 85 (1993), 37-55. | EuDML | Numdam | MR | Zbl

[MP] A.S. Merkurjev, I.A. Panin, K-theory of algebraic tori and toric varieties. K-Theory 12 (1997), n° 2, 101-143. | MR | Zbl

[Mi] J.S. Milne, Étale cohomology. Princeton Math. Series, vol. 33, Princeton University Press, 1980. | MR | Zbl

[Né] A. Néron, L'arithmétique sur les variétés algébriques [d'après A. Weil]. Séminaire Bourbaki 4-ème année, 1951/52, n° 66. | EuDML | Numdam

[Ono] T. Ono, On the Tamagawa number of algebraic tori. Ann. of Math. (2) 78 (1963), n° 1, 47-73. | MR | Zbl

[Pe1] E. Peyre, Hauteurs et mesures de Tamagawa sur les variétés de Fano. Duke Math. J. 79 (1995), n° 1, 101-218. | MR | Zbl

[Pe2] ____, Terme principal de la fonction zéta des hauteurs et torseurs universels. Nombre et répartition de points de hauteur bornée, Astérisque, vol. 251, SMF, Paris, 1998, pp. 259-298. | MR | Zbl

[Pe3] _____, Torseurs universels et méthode du cercle. Rational points on algebraic varieties, Progress in Math., vol. 199, Birkhaüser, Basel, 2001, pp. 221-274. | MR | Zbl

[Pe4] _____, Points de hauteur bornée sur les variétés de drapeaux en caractéristique finie. Prépublication (2001).

[PT1] E. Peyre, Y. Tschinkel, Tamagawa numbers of diagonal cubic surfaces, numerical evidence. Math. Comp. 70 (2000), n° 233, 367-387. | MR | Zbl

[PT2] _____, Tamagawa numbers of diagonal cubic surfaces of higher rank. Rational points on algebraic varieties, Progress in Math., vol. 199, Birkhaüser, Basel, 2001, pp. 275-305. | MR | Zbl

[Sa] P. Salberger, Tamagawa measures on universal torsors and points of bounded height on Fano varieties. Nombre et répartition de points de hauteur bornée, Astérisque, vol. 251, SMF, Paris, 1998, pp. 91-258. | MR | Zbl

[Sc] S.H. Schanuel, Heights in number fields. Bull. Soc. Math. France 107 (1979), 433-449. | EuDML | Numdam | MR | Zbl

[Sch] W. Schmidt, Asymptotic formulae for points lattices of bounded determinant and subspaces of bounded height. Duke Math. J. 35 (1968), 327-339. | MR | Zbl

[Se1] J.-P. Serre, Valeurs propres des endomorphismes de Frobenius (d'après P. Deligne). Séminaire Bourbaki 26-ème année, 1973/74, n° 446. | EuDML | Numdam | Zbl

[Se2] ____, Lectures on the Mordell- Weil theorem. Aspects of Mathematics, vol. E15, Vieweg, Braunschweig, Wiesbaden, 1989. | MR

[Sk] A.N. Skorobogatov, On a theorem of Enriques-Swinnerton-Dyer. Ann. Fac. Sci. Toulouse Math. (6) 2 (1993), n° 3, 429-440. | EuDML | Numdam | MR | Zbl

[SSD] J.B. Slater, H.P.F. Swinnerton-Dyer, Counting points on cubic surfaces, I. Nombre et répartition de points de hauteur bornée, Astérisque, vol. 251, SMF, Paris, 1998, pp. 1-12. | MR | Zbl

[ST1] M. Strauch, Y. Tschinkel, Height zeta functions of twisted products. Math. Res. Lett. 4 (1997), 273-282. | MR | Zbl

[ST2] _____, Height zeta functions of toric bundles over flag varieties. Selecta Math.(N.S.) 5 (1999), n° 3, 325-396. | MR | Zbl

[SD] H.P.F. Swinnerton-Dyer, Counting rational points on cubic surfaces. Classification of algebraic varieties (L'Aquila, 1992) (C. Ciliberto, E. L. Livorni, A. J. Sommese, eds.), Contemp. Math., vol. 162, AMS, Providence, 1994, pp. 371-379. | MR | Zbl

[Va] R.C. Vaughan, The Hardy-Littlewood method. Cambridge Tracts in Mathematics, vol. 80, Cambridge University Press, Cambridge- New York, 1981. | MR | Zbl

[We1] A. Weil, Arithmetic on algebraic varieties. Ann. of Math. (2) 53 (1951), 412-444. | MR | Zbl

[We2] ____, Adèles and algebraic groups. Progress in Mathematics, vol. 23, Birkhaüser, Boston, Basel, Stuttgart, 1982. | MR