Nous donnons des conditions suffisantes pour que l’ensemble des fractions d’un ensemble d’entiers soit dense dans , en termes des densités logarithmiques de . Ces conditions diffèrent sensiblement de celles précédemment obtenues en termes des densités asymptotiques.
In the paper sufficient conditions for the -density of a set of positive integers in terms of logarithmic densities are given. They differ substantially from those derived previously in terms of asymptotic densities.
@article{JTNB_2003__15_1_309_0, author = {Ladislav Mi\v{s}{\'\i}k and J\'anos T. T\'oth}, title = {Logarithmic density of a sequence of integers and density of its ratio set}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {309--318}, publisher = {Universit\'e Bordeaux I}, volume = {15}, number = {1}, year = {2003}, zbl = {02058871}, mrnumber = {2019018}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_309_0/} }
TY - JOUR AU - Ladislav Mišík AU - János T. Tóth TI - Logarithmic density of a sequence of integers and density of its ratio set JO - Journal de théorie des nombres de Bordeaux PY - 2003 SP - 309 EP - 318 VL - 15 IS - 1 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_309_0/ LA - en ID - JTNB_2003__15_1_309_0 ER -
%0 Journal Article %A Ladislav Mišík %A János T. Tóth %T Logarithmic density of a sequence of integers and density of its ratio set %J Journal de théorie des nombres de Bordeaux %D 2003 %P 309-318 %V 15 %N 1 %I Université Bordeaux I %U https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_309_0/ %G en %F JTNB_2003__15_1_309_0
Ladislav Mišík; János T. Tóth. Logarithmic density of a sequence of integers and density of its ratio set. Journal de théorie des nombres de Bordeaux, Tome 15 (2003) no. 1, pp. 309-318. https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_309_0/
[1] Theory and Application of Infinite Series. Blackie & Son Limited, London and Glasgow, 2-nd English Edition, 1957. | Zbl
,[2] Asymptotic density of A C N and density of the ratio set R(A). Acta Arith. 87 (1998), 67-78. Corrigendum in Acta Arith. 103 (2002), 191-200. | MR | Zbl
, ,[3] On ratio sets of sets of natural numbers. Acta Arith. 15 (1969), 173-278. | MR | Zbl
,[4] Quotientbasen und (R)-dichte mengen. Acta Arith. 19 (1971), 63-78. | MR | Zbl
,[5] Relation between (R)-density and the lower asymptotic density. Acta Math. Constantine the Philosopher University Nitra 3 (1998), 39-44.
,