The analytic continuation and the order estimate of multiple Dirichlet series
Journal de théorie des nombres de Bordeaux, Tome 15 (2003) no. 1, pp. 267-274.

Dans cet article, nous considérons que certaines séries de Dirichlet multiples, dont nous montrons le prolongement analytique en utilisant la formule intégrale de Mellin-Barnes. Des majorations de ces séries sont également obtenues.

Multiple Dirichlet series of several complex variables are considered. Using the Mellin-Barnes integral formula, we prove the analytic continuation and an upper bound estimate.

@article{JTNB_2003__15_1_267_0,
     author = {Kohji Matsumoto and Yoshio Tanigawa},
     title = {The analytic continuation and the order estimate of multiple {Dirichlet} series},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {267--274},
     publisher = {Universit\'e Bordeaux I},
     volume = {15},
     number = {1},
     year = {2003},
     zbl = {1050.11082},
     mrnumber = {2019016},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_267_0/}
}
TY  - JOUR
AU  - Kohji Matsumoto
AU  - Yoshio Tanigawa
TI  - The analytic continuation and the order estimate of multiple Dirichlet series
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2003
SP  - 267
EP  - 274
VL  - 15
IS  - 1
PB  - Université Bordeaux I
UR  - https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_267_0/
LA  - en
ID  - JTNB_2003__15_1_267_0
ER  - 
%0 Journal Article
%A Kohji Matsumoto
%A Yoshio Tanigawa
%T The analytic continuation and the order estimate of multiple Dirichlet series
%J Journal de théorie des nombres de Bordeaux
%D 2003
%P 267-274
%V 15
%N 1
%I Université Bordeaux I
%U https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_267_0/
%G en
%F JTNB_2003__15_1_267_0
Kohji Matsumoto; Yoshio Tanigawa. The analytic continuation and the order estimate of multiple Dirichlet series. Journal de théorie des nombres de Bordeaux, Tome 15 (2003) no. 1, pp. 267-274. https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_267_0/

[1] S. Akiyama, S. Egami, Y. Tanigawa, An analytic continuation of multiple zeta functions and their values at non-positive integers. Acta Arith. 98 (2001), 107-116. | MR | Zbl

[2] S. Akiyama, H. Ishikawa, On analytic continuation of multiple L-functions and related zeta-functions. In: Analytic number theory (Beijing/Kyoto, 1999), 1-16, Dev. Math., 6, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl

[3] T. Arakawa, M. Kaneko, Multiple zeta values, poly-Bernoulli numbers, and related zeta functions. Nagoya Math. J. 153 (1999), 189-209. | MR | Zbl

[4] T. Arakawa, M. Kaneko, On multiple L-values, in preparation.

[5] A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes. Math. Res. Letters 5 (1998), 497-516. | MR | Zbl

[6] A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, preprint.

[7] A. Good, The square mean of Dirichlet series associated with cusp forms. Mathematika 29 (1982), 278-295. | MR | Zbl

[8] H. Ishikawa, On analytic properties of a multiple L-function. In: Analytic extension formulas and their applications (Fukuoka, 1999/Kyoto, 2000), 105-122, Int. Soc. Anal. Appl. Comput., 9, Kluwer Acad. Publ., Dordrecht, 2001. | MR | Zbl

[9] H. Ishikawa, A multiple character sum and a multiple L-function. Arch. Math. 79 (2002), 439-448. | MR | Zbl

[10] K. Matsumoto, Asymptotic expansions of double zeta-functions of Barnes, of Shintani, and Eisenstein series. Nagoya Math. J., to appear. | MR | Zbl

[11] K. Matsumoto, The analytic continuation and the asymptotic behaviour of certain multiple zeta-functions I. J. Number Theory, to appear. | MR | Zbl

[12] K. Matsumoto, The analytic continuation and the asymptotic behaviour of certain multiple zeta-functions II. In: Analytic and Probabilistic Methods in Number Theory, Proc. 3rd Intern. Conf. in Honour of J. Kubilius (Palanga, Lithuania, Sept 2001), 188-194, A. Dubickas et al. (eds.), TEV, Vilnius, 2002. | MR | Zbl

[13] J. Zhao, Analytic continuation of multiple zeta functions. Proc. Amer. Math. Soc. 128 (2000), 1275-1283. | MR | Zbl