Pour toute extension galoisienne de et tout entier positif premier au nombre de classes de , il existe une extension abélienne de d’exposant telle que le -sous-groupe de torsion du groupe de Brauer de est égal au groupe de Brauer relatif de .
Given a number field Galois over the rational field , and a positive integer prime to the class number of , there exists an abelian extension (of exponent ) such that the -torsion subgroup of the Brauer group of is equal to the relative Brauer group of .
@article{JTNB_2003__15_1_199_0, author = {Hershy Kisilevsky and Jack Sonn}, title = {On the $n$-torsion subgroup of the {Brauer} group of a number field}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {199--204}, publisher = {Universit\'e Bordeaux I}, volume = {15}, number = {1}, year = {2003}, zbl = {1048.11089}, mrnumber = {2019011}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_199_0/} }
TY - JOUR AU - Hershy Kisilevsky AU - Jack Sonn TI - On the $n$-torsion subgroup of the Brauer group of a number field JO - Journal de théorie des nombres de Bordeaux PY - 2003 SP - 199 EP - 204 VL - 15 IS - 1 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_199_0/ LA - en ID - JTNB_2003__15_1_199_0 ER -
%0 Journal Article %A Hershy Kisilevsky %A Jack Sonn %T On the $n$-torsion subgroup of the Brauer group of a number field %J Journal de théorie des nombres de Bordeaux %D 2003 %P 199-204 %V 15 %N 1 %I Université Bordeaux I %U https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_199_0/ %G en %F JTNB_2003__15_1_199_0
Hershy Kisilevsky; Jack Sonn. On the $n$-torsion subgroup of the Brauer group of a number field. Journal de théorie des nombres de Bordeaux, Tome 15 (2003) no. 1, pp. 199-204. https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_199_0/
[1] Relative Brauer groups and m-torsion. Proc. Amer. Math. Soc. 130 (2002), 1333-1337. | MR | Zbl
, ,[2] Relative Brauer groups I. J. Reine Angew. Math. 321 (1981), 179-194. | MR | Zbl
, ,[3] Relative Brauer groups II. J. Reine Angew. Math. 328 (1981), 39-57. | MR | Zbl
, , ,[4] Relative Brauer groups III. J. Reine Angew. Math. 335 (1982), 37-39. | MR | Zbl
, ,