Un entier et un réel tel que étant fixés, on considère dans la formule asymptotique
For a fixed integer , and fixed we consider
@article{JTNB_2003__15_1_163_0, author = {Aleksandar Ivi\'c}, title = {On mean values of some zeta-functions in the critical strip}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {163--178}, publisher = {Universit\'e Bordeaux I}, volume = {15}, number = {1}, year = {2003}, zbl = {1050.11075}, mrnumber = {2019009}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_163_0/} }
TY - JOUR AU - Aleksandar Ivić TI - On mean values of some zeta-functions in the critical strip JO - Journal de théorie des nombres de Bordeaux PY - 2003 SP - 163 EP - 178 VL - 15 IS - 1 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_163_0/ LA - en ID - JTNB_2003__15_1_163_0 ER -
Aleksandar Ivić. On mean values of some zeta-functions in the critical strip. Journal de théorie des nombres de Bordeaux, Tome 15 (2003) no. 1, pp. 163-178. https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_163_0/
[1] An application of the Hooley-Huxley contour. Acta Arith. 65 (1993), 45-51. | MR | Zbl
, , ,[2] Functional equations with multiple gamma factors and the average order of arithmetical functions. Ann. of Math. 76 (1962), 93-136. | MR | Zbl
, ,[3] The approximate functional equation for a class of zeta-functions. Math. Ann. 152 (1963), 30-64. | MR | Zbl
, ,[4] The Riemann zeta-function, John Wiley & Sons, New York, 1985. | MR | Zbl
,[5] Large values of certain number-theoretic error terms. Acta Arith. 56 (1990), 135-159. | MR | Zbl
,[6] On zeta-functions associated with Fourier coefficients of cusp forms. Proceedings of the Amalfi Conference on Analytic Number Theory (Amalfi, September 1989), Università di Salerno, Salerno 1992, pp. 231-246. | MR | Zbl
,[7] Some problems on mean values of the Riemann zeta-function. J. Théor. Nombres Bordeaux 8 (1996), 101-123. | Numdam | MR | Zbl
,[8] On some conjectures and results for the Riemann zeta-function and Hecke series. Acta Arith. 99 (2001), no. 2, 115-145. | MR | Zbl
,[9] Some new estimates in the Dirichlet divisor problem. Acta Arith. 52 (1989), 241-253. | MR | Zbl
, ,[10] On the error term in the mean square formula for the Riemann zeta-function in the critical strip. Monatsh. Math. 121 (1996), 213-229. | MR | Zbl
, ,[11] On Riesz means of the coefficients of the Rankin-Selberg series. Math. Proc. Camb. Phil. Soc. 127 (1999), 117-131. | MR | Zbl
, , ,[12] A mean value theorm for Dirichlet series and a general divisor problem, to appear.
, , ,[13] The mean values and the universality of Rankin-Selberg L-functions. Proc. Turku Symposium on Number Theory in Memory of K. Inkeri, May 31-June 4, 1999, Walter de Gruyter, Berlin etc., 2001, in print. | MR | Zbl
,[14] General L-functions. Ann. Mat. Pura Appl. 130 (1982), 287-306. | MR | Zbl
,[15] Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions. II, The order of Fourier coefficients of integral modular forms. Math. Proc. Cambridge Phil. Soc. 35 (1939), 357-372. | Zbl
,[16] Modular Forms. Ellis Horwood Ltd., Chichester, England, 1984. | MR | Zbl
,[17] Über Dirichletreihen mit Funktionalgleichung. Publs. Inst. Math. (Belgrade) 11 (1957), 73-124. | MR | Zbl
,[18] Old and new conjectures and results about a class of Dirichlet series. Proc. Amalfi Conf. Analytic Number Theory, eds. E. Bombieri et al., Università di Salerno, Salerno, 1992, pp. 367-385. | MR | Zbl
,[19] The theory of the Riemann zeta-function, 2nd edition.Oxford University Press, Oxford, 1986. | MR | Zbl
,[20] On the divisor problem. Kexue Tongbao 33 (1988), 1484-1485. | MR
,