On donne une condition nécessaire pour qu’une représentation surjective Gal provienne de la 3-torsion d’une -courbe. Nous étudions plus particulièrement le cas des -courbes quadratiques.
We give a necessary condition for a surjective representation Gal to arise from the -torsion of a -curve. We pay a special attention to the case of quadratic -curves.
@article{JTNB_2003__15_1_125_0, author = {Julio Fern\'andez}, title = {On octahedral extensions of $\mathbb {Q}$ and quadratic $\mathbb {Q}$-curves}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {125--131}, publisher = {Universit\'e Bordeaux I}, volume = {15}, number = {1}, year = {2003}, zbl = {1049.11117}, mrnumber = {2019005}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_125_0/} }
TY - JOUR AU - Julio Fernández TI - On octahedral extensions of $\mathbb {Q}$ and quadratic $\mathbb {Q}$-curves JO - Journal de théorie des nombres de Bordeaux PY - 2003 SP - 125 EP - 131 VL - 15 IS - 1 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_125_0/ LA - en ID - JTNB_2003__15_1_125_0 ER -
%0 Journal Article %A Julio Fernández %T On octahedral extensions of $\mathbb {Q}$ and quadratic $\mathbb {Q}$-curves %J Journal de théorie des nombres de Bordeaux %D 2003 %P 125-131 %V 15 %N 1 %I Université Bordeaux I %U https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_125_0/ %G en %F JTNB_2003__15_1_125_0
Julio Fernández. On octahedral extensions of $\mathbb {Q}$ and quadratic $\mathbb {Q}$-curves. Journal de théorie des nombres de Bordeaux, Tome 15 (2003) no. 1, pp. 125-131. https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_125_0/
[1] On the modularity of Q-curves. Duke Math. J. 109 (2001), no. 1, 97-122. | MR | Zbl
, ,[2] Octahedral Galois representations arising from Q-curves of degree 2. Canad. J. Math. 54 (2002), 1202-1228. | MR | Zbl
, , ,[3] An octahedral-elliptic type equality in Br2(k). C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 1, 39-44. | MR | Zbl
, ,[4] Liftings of projective 2-dimensional Galois representations and embedding problems. J. Algebra 171 (1995), no. 2, 541-566. | MR | Zbl
,[5] Q-curves and abelian varieties of GL2 -type. Proc. London Math. Soc. (3) 81 (2000), no. 2, 285-317. | MR | Zbl
,[6] Fields of definition of Q-curves. J. Théor Nombres Bordeaux 13 (2001), no. 1, 275-285. | Numdam | MR | Zbl
,[7] Abelian varieties over Q and modular forms. Algebra and topology 1992 (Taejön), Korea Adv. Inst. Sci. Tech., Taejón, 1992, pp. 53-79. | MR
,[8] Modular forms of weight one and Galois representations. Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, London, 1977, pp. 193-268. | MR | Zbl
,[9] L'invariant de Witt de la forme Tr(x2). Comment. Math. Helv. 59 (1984), no. 4, 651-676. | MR | Zbl
,[10] On stem extensions of Sn as Galois group over number fields. J. Algebra 116 (1988), 251-260. | MR | Zbl
,