We give a necessary condition for a surjective representation Gal to arise from the -torsion of a -curve. We pay a special attention to the case of quadratic -curves.
On donne une condition nécessaire pour qu’une représentation surjective Gal provienne de la 3-torsion d’une -courbe. Nous étudions plus particulièrement le cas des -courbes quadratiques.
@article{JTNB_2003__15_1_125_0,
author = {Julio Fern\'andez},
title = {On octahedral extensions of $\mathbb {Q}$ and quadratic $\mathbb {Q}$-curves},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {125--131},
year = {2003},
publisher = {Universit\'e Bordeaux I},
volume = {15},
number = {1},
zbl = {1049.11117},
mrnumber = {2019005},
language = {en},
url = {https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_125_0/}
}
TY - JOUR
AU - Julio Fernández
TI - On octahedral extensions of $\mathbb {Q}$ and quadratic $\mathbb {Q}$-curves
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
SP - 125
EP - 131
VL - 15
IS - 1
PB - Université Bordeaux I
UR - https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_125_0/
LA - en
ID - JTNB_2003__15_1_125_0
ER -
%0 Journal Article
%A Julio Fernández
%T On octahedral extensions of $\mathbb {Q}$ and quadratic $\mathbb {Q}$-curves
%J Journal de théorie des nombres de Bordeaux
%D 2003
%P 125-131
%V 15
%N 1
%I Université Bordeaux I
%U https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_125_0/
%G en
%F JTNB_2003__15_1_125_0
Julio Fernández. On octahedral extensions of $\mathbb {Q}$ and quadratic $\mathbb {Q}$-curves. Journal de théorie des nombres de Bordeaux, Tome 15 (2003) no. 1, pp. 125-131. https://jtnb.centre-mersenne.org/item/JTNB_2003__15_1_125_0/
[1] , , On the modularity of Q-curves. Duke Math. J. 109 (2001), no. 1, 97-122. | Zbl | MR
[2] , , , Octahedral Galois representations arising from Q-curves of degree 2. Canad. J. Math. 54 (2002), 1202-1228. | Zbl | MR
[3] , , An octahedral-elliptic type equality in Br2(k). C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 1, 39-44. | Zbl | MR
[4] , Liftings of projective 2-dimensional Galois representations and embedding problems. J. Algebra 171 (1995), no. 2, 541-566. | Zbl | MR
[5] , Q-curves and abelian varieties of GL2 -type. Proc. London Math. Soc. (3) 81 (2000), no. 2, 285-317. | Zbl | MR
[6] , Fields of definition of Q-curves. J. Théor Nombres Bordeaux 13 (2001), no. 1, 275-285. | Zbl | MR | Numdam
[7] , Abelian varieties over Q and modular forms. Algebra and topology 1992 (Taejön), Korea Adv. Inst. Sci. Tech., Taejón, 1992, pp. 53-79. | MR
[8] , Modular forms of weight one and Galois representations. Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, London, 1977, pp. 193-268. | Zbl | MR
[9] , L'invariant de Witt de la forme Tr(x2). Comment. Math. Helv. 59 (1984), no. 4, 651-676. | Zbl | MR
[10] , On stem extensions of Sn as Galois group over number fields. J. Algebra 116 (1988), 251-260. | Zbl | MR