En utilisant les extensions naturelles des transformations de Rosen, nous obtenons une représentation de la chaîne d'ordre infini associée à la suite des quotients incomplets des fractions de Rosen. Associé au comportement ergodique d'un certain système aléatoire homogène à liaisons complètes, ce fait nous permet de résoudre une version du problème de Gauss-Kuzmin pour le développement en fraction de Rosen.
Using the natural extensions for the Rosen maps, we give an infinite-order-chain representation of the sequence of the incomplete quotients of the Rosen fractions. Together with the ergodic behaviour of a certain homogeneous random system with complete connections, this allows us to solve a variant of Gauss-Kuzmin problem for the above fraction expansion.
@article{JTNB_2002__14_2_667_0, author = {Gabriela I. Sebe}, title = {A {Gauss-Kuzmin} theorem for the {Rosen} fractions}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {667--682}, publisher = {Universit\'e Bordeaux I}, volume = {14}, number = {2}, year = {2002}, zbl = {1067.11044}, mrnumber = {2040700}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_667_0/} }
TY - JOUR AU - Gabriela I. Sebe TI - A Gauss-Kuzmin theorem for the Rosen fractions JO - Journal de théorie des nombres de Bordeaux PY - 2002 SP - 667 EP - 682 VL - 14 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_667_0/ LA - en ID - JTNB_2002__14_2_667_0 ER -
Gabriela I. Sebe. A Gauss-Kuzmin theorem for the Rosen fractions. Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 2, pp. 667-682. https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_667_0/
[1] Natural extensions for the Rosen fractions. Trans. Amer. Math. Soc. 352 (2000), 1277-1298. | MR | Zbl
, , ,[2] Backward continued fractions and their invariant measures. Canad. Math. Bull. 39 (1996), 186-198. | MR | Zbl
, ,[3] The Hurwitz constant and Diophantine approximation on Hecke groups. J. London Math. Soc. 34 (1986), 219-234. | MR | Zbl
, ,[4] A basic tool in mathematical chaos theory: Doeblin and Fortet's ergodic theorem and Ionescu Tulcea-Marinescu's generalization. In: Doeblin and Modern Probability (Blaubeuren, 1991), 111-124. Contemp. Math. 149, Amer. Math. Soc. Providence, RI, 1993. | MR | Zbl
,[5] On the Gauss-Kuzmin-Lévy theorem, III. Rev. Roumaine Math. Pures Appl. 42 (1997), 71-88. | MR | Zbl
,[6] GRIGORESCU, Dependence with complete connections and its applications. Cambridge Univ. Press, Cambrigde, 1990. | MR | Zbl
[7] Diophantine approximation on Hecke groups, Glasgow Math. J. 27 (1985), 117-127. | MR | Zbl
,[8] Lagrange's theorem for Hecke triangle groups. In: A tribute to Emil Grosswald: number theory and related analysis, 477-480, Contemp. Math. 143, Amer. Math. Soc., Providence, RI, 1993. | MR | Zbl
,[9] Metrical theory for a class of continued fraction transformations and their natural extensions. Tokyo J. Math. 7 (1981), 399-426. | MR | Zbl
,[10] Continued fractions, geodesic flows and Ford circles. In: Algorithms, fractals, and dynamics (Okayama/Kyoto, 1992), 179-191, Plenum, New York, 1995. | MR | Zbl
,[11] A class of continued fractions associated with certain properly discontinuous groups. Duke Math. J. 21 (1954), 549-563. | MR | Zbl
,[12] Hecke groups and continued fractions. Bull. Austral. Math. Soc. 46 (1992), 459-474. | MR | Zbl
, ,[13] Remarks on the Rosen λ-continued fractions. In: Number theory with an emphasis on the Markoff spectrum (Provo, UT, 1991), 227-238, Lecture Notes in Pure and Appl. Math., 147, Dekker, New York, 1993. | Zbl
,