Michel Mendès France's “Folding Lemma” for continued fraction expansions provides an unusual explanation for the well known symmetry in the expansion of a quadratic irrational integer.
Le «lemme de pliage» de Michel Mendès France fournit une nouvelle justification de la symétrie du développement en fraction continue d'un irrationnel quadratique.
@article{JTNB_2002__14_2_603_0,
author = {Alfred J. Van der Poorten},
title = {Symmetry and folding of continued fractions},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {603--611},
year = {2002},
publisher = {Universit\'e Bordeaux I},
volume = {14},
number = {2},
zbl = {1067.11001},
mrnumber = {2040696},
language = {en},
url = {https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_603_0/}
}
TY - JOUR AU - Alfred J. Van der Poorten TI - Symmetry and folding of continued fractions JO - Journal de théorie des nombres de Bordeaux PY - 2002 SP - 603 EP - 611 VL - 14 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_603_0/ LA - en ID - JTNB_2002__14_2_603_0 ER -
Alfred J. Van der Poorten. Symmetry and folding of continued fractions. Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 2, pp. 603-611. https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_603_0/
[1] , , , FOLDS!. Math. Intelligencer 4 (1982), 130-138; II: Symmetry disturbed. ibid. 173-181; III: More morphisms. ibid. 190-195. Erratum 5 (1983), page 5. | Zbl | MR
[2] , Sur les fractions continues limitées. Acta Arith. 23 (1973), 207-215. | Zbl | MR
[3] , Principe de la symétrie perturbée. Seminar on Number Theory, Paris 1979-80, 77-98, Progr. Math. 12, Birkhäuser, Boston, Mass., 1981. [MR 83a:10089] | Zbl | MR
[4] , , Folded continued fractions. J. Number Theory 40 (1992), 237-250. | Zbl | MR