Symmetry and folding of continued fractions
Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 2, pp. 603-611.

Le «lemme de pliage» de Michel Mendès France fournit une nouvelle justification de la symétrie du développement en fraction continue d'un irrationnel quadratique.

Michel Mendès France's “Folding Lemma” for continued fraction expansions provides an unusual explanation for the well known symmetry in the expansion of a quadratic irrational integer.

@article{JTNB_2002__14_2_603_0,
     author = {Alfred J. Van der Poorten},
     title = {Symmetry and folding of continued fractions},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {603--611},
     publisher = {Universit\'e Bordeaux I},
     volume = {14},
     number = {2},
     year = {2002},
     zbl = {1067.11001},
     mrnumber = {2040696},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_603_0/}
}
TY  - JOUR
AU  - Alfred J. Van der Poorten
TI  - Symmetry and folding of continued fractions
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2002
SP  - 603
EP  - 611
VL  - 14
IS  - 2
PB  - Université Bordeaux I
UR  - https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_603_0/
LA  - en
ID  - JTNB_2002__14_2_603_0
ER  - 
%0 Journal Article
%A Alfred J. Van der Poorten
%T Symmetry and folding of continued fractions
%J Journal de théorie des nombres de Bordeaux
%D 2002
%P 603-611
%V 14
%N 2
%I Université Bordeaux I
%U https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_603_0/
%G en
%F JTNB_2002__14_2_603_0
Alfred J. Van der Poorten. Symmetry and folding of continued fractions. Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 2, pp. 603-611. https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_603_0/

[1] F.M. Dekking, M. Mendès France, A.J. Van Der Poorten, FOLDS!. Math. Intelligencer 4 (1982), 130-138; II: Symmetry disturbed. ibid. 173-181; III: More morphisms. ibid. 190-195. Erratum 5 (1983), page 5. | MR | Zbl

[2] M. Mendès France, Sur les fractions continues limitées. Acta Arith. 23 (1973), 207-215. | MR | Zbl

[3] M. Mendès France, Principe de la symétrie perturbée. Seminar on Number Theory, Paris 1979-80, 77-98, Progr. Math. 12, Birkhäuser, Boston, Mass., 1981. [MR 83a:10089] | MR | Zbl

[4] A.J. Van Der Poorten, J. Shallit, Folded continued fractions. J. Number Theory 40 (1992), 237-250. | MR | Zbl