Le «lemme de pliage» de Michel Mendès France fournit une nouvelle justification de la symétrie du développement en fraction continue d'un irrationnel quadratique.
Michel Mendès France's “Folding Lemma” for continued fraction expansions provides an unusual explanation for the well known symmetry in the expansion of a quadratic irrational integer.
@article{JTNB_2002__14_2_603_0, author = {Alfred J. Van der Poorten}, title = {Symmetry and folding of continued fractions}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {603--611}, publisher = {Universit\'e Bordeaux I}, volume = {14}, number = {2}, year = {2002}, zbl = {1067.11001}, mrnumber = {2040696}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_603_0/} }
TY - JOUR AU - Alfred J. Van der Poorten TI - Symmetry and folding of continued fractions JO - Journal de théorie des nombres de Bordeaux PY - 2002 SP - 603 EP - 611 VL - 14 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_603_0/ LA - en ID - JTNB_2002__14_2_603_0 ER -
Alfred J. Van der Poorten. Symmetry and folding of continued fractions. Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 2, pp. 603-611. https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_603_0/
[1] FOLDS!. Math. Intelligencer 4 (1982), 130-138; II: Symmetry disturbed. ibid. 173-181; III: More morphisms. ibid. 190-195. Erratum 5 (1983), page 5. | MR | Zbl
, , ,[2] Sur les fractions continues limitées. Acta Arith. 23 (1973), 207-215. | MR | Zbl
,[3] Principe de la symétrie perturbée. Seminar on Number Theory, Paris 1979-80, 77-98, Progr. Math. 12, Birkhäuser, Boston, Mass., 1981. [MR 83a:10089] | MR | Zbl
,[4] Folded continued fractions. J. Number Theory 40 (1992), 237-250. | MR | Zbl
, ,