Any sequence of distinct numbers from [0,1] generates a binary tree by storing the numbers consecutively at the nodes according to a left-right algorithm (or equivalently by sorting the numbers according to the Quicksort algorithm). Let be the height of the tree generated by Obviously
On peut construire à partir d’une suite de nombres distincts de l’intervalle [0,1] un arbre binaire en plaçant successivement ces nombres sur les noeuds selon un algorithme “gauche-droite” (cela revient à classer les nombres selon l’algorithme Quicksort). On note la hauteur de l’arbre obtenu à partir des nombres Il est évident que
@article{JTNB_2002__14_2_415_0,
author = {Michel Dekking and Peter Van der Wal},
title = {Uniform distribution modulo one and binary search trees},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {415--424},
year = {2002},
publisher = {Universit\'e Bordeaux I},
volume = {14},
number = {2},
zbl = {1075.11054},
mrnumber = {2040685},
language = {en},
url = {https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_415_0/}
}
TY - JOUR AU - Michel Dekking AU - Peter Van der Wal TI - Uniform distribution modulo one and binary search trees JO - Journal de théorie des nombres de Bordeaux PY - 2002 SP - 415 EP - 424 VL - 14 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_415_0/ LA - en ID - JTNB_2002__14_2_415_0 ER -
%0 Journal Article %A Michel Dekking %A Peter Van der Wal %T Uniform distribution modulo one and binary search trees %J Journal de théorie des nombres de Bordeaux %D 2002 %P 415-424 %V 14 %N 2 %I Université Bordeaux I %U https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_415_0/ %G en %F JTNB_2002__14_2_415_0
Michel Dekking; Peter Van der Wal. Uniform distribution modulo one and binary search trees. Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 2, pp. 415-424. https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_415_0/
[1] , , Renormalisation of curlicues. Nonlinearity 1 (1988), 1-26. | Zbl | MR
[2] , , , On the node structure of binary search trees. In Mathematics and Computer Science - Algorithms, Trees, Combinatorics and Probabilities (Eds. Gardy, D. and Mokkadem, A.), pages 31-40. Birkhauser, Basel, 2000. | Zbl | MR
[3] , , Uniform distribution modulo one: a geometrical viewpoint. J. Reine Angew. Math. 329 (1981), 143-153. | Zbl | MR
[4] , Geometric aspect of Weyl sums. In Elementary and analytic theory of numbers (Warsaw, 1982), pages 75-82. PWN, Warsaw, 1985. | Zbl | MR
[5] , A note on the height of binary search trees. J. Assoc. Comput. Mach. 33 (1986), 489-498. | Zbl | MR
[6] , , A study of random Weyl trees. Random Structures Algorithms 12 (1998), 271-295. | Zbl | MR
[7] , Quicksort. Comput. J. 5 (1962), 10-15. | Zbl | MR
[8] , Evolution of random search trees. John Wiley & Sons Inc., New York, 1992. Wiley-Interscience Series in Discrete Mathematics and Optimization. | Zbl | MR
[9] , Asymptotical growth of a class of random trees. Ann. Probab. 13 (1985), 414-427. | Zbl | MR