Let denote the modular group . In this paper it is proved that . The exponent improves the exponent obtained by W. Z. Luo and P. Sarnak.
Soit . On démontre que où l’exposant améliore l’exposant précédemment obtenu par W. Z. Luo et P. Sarnak.
@article{JTNB_2002__14_1_59_0,
author = {Yingchun Cai},
title = {Prime geodesic theorem},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {59--72},
year = {2002},
publisher = {Universit\'e Bordeaux I},
volume = {14},
number = {1},
zbl = {1028.11030},
mrnumber = {1925990},
language = {en},
url = {https://jtnb.centre-mersenne.org/item/JTNB_2002__14_1_59_0/}
}
Yingchun Cai. Prime geodesic theorem. Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 1, pp. 59-72. https://jtnb.centre-mersenne.org/item/JTNB_2002__14_1_59_0/
[1] , The character sums estimate with r = 3. J. London. Math. Soc.(2) 33 (1986), 219-226. | Zbl | MR
[2] , The Selberg Trace Formula for PSL(2, R), I. Lecture Notes in Math. 548, Berlin- New York, 1976. | Zbl
[3] , The Selberg Trace Formula and the Riemann Zeta-function. Duke Math. J. 43 (1976), 441-482. | Zbl | MR
[4] , Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen II. Math. Ann. 142 (1961), 385-398 and 143 (1961), 463-464. | Zbl | MR
[5] , Prime geodesic theorem. J. Reine Angew. Math. 349 (1984), 136-159. | Zbl | MR
[6] , Introduction to the Spectral Theory of Automorphic Forms. Biblioteca de la Revista Matemática Iberoamericana, 1995 | Zbl | MR
[7] , An arithmetical form of the Selberg Trace formula and the distribution of the norms of primitive hyperbolic classes of the modular group. Akad. Nauk. SSSR., Khabarovsk, 1978. | Zbl
[8] , The Petersson conjecture for cusp forms of weight zero and the Linnik conjecture. Sums of Kloosterman sums (Russian). Mat. Sb. (N.S.) 111(153) (1980), no. 3, 334-383, 479. | Zbl | MR
[9] , , Quantum ergodicity of eigenfunctions on PSL2(Z)\H2. Inst. Hautes. Etudes Sci. Publ. Math. 81 (1995), 207-237. | Zbl | Numdam
[10] , , , On Selberg's eigenvalue Conjecture. Geom. Funct. Anal. 5 (1995), 387-401. | Zbl | MR
[11] , Contribution to the theory of Ramanujan's function τ(n) and similar arithmetical functions. Proc. Cambridge. Phil. Soc. 35 (1939), 351-372. | Zbl
[12] , Class number of infinitely binary quadratic forms. J. Number Theory 15 (1982), 229-247. | Zbl | MR
[13] , Spectral theory of automorphic functions, (in Russian). Trudy Math. Inst. Steklova 153 (1981), 1-171. | Zbl | MR