Artin's primitive root conjecture for quadratic fields
Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 1, pp. 287-324.

Soit α fixé dans un corps quadratrique K. On note S l’ensemble des nombres premiers p pour lesquels α admet un ordre maximal modulo p. Sous G.R.H., on montre que S a une densité. Nous donnons aussi des conditions nécessaires et suffisantes pour que cette densité soit strictement positive.

Fix an element α in a quadratic field K. Define S as the set of rational primes p, for which α has maximal order modulo p. Under the assumption of the generalized Riemann hypothesis, we show that S has a density. Moreover, we give necessary and sufficient conditions for the density of S to be positive.

@article{JTNB_2002__14_1_287_0,
     author = {Hans Roskam},
     title = {Artin's primitive root conjecture for quadratic fields},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {287--324},
     publisher = {Universit\'e Bordeaux I},
     volume = {14},
     number = {1},
     year = {2002},
     zbl = {1026.11086},
     mrnumber = {1926004},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/item/JTNB_2002__14_1_287_0/}
}
TY  - JOUR
AU  - Hans Roskam
TI  - Artin's primitive root conjecture for quadratic fields
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2002
SP  - 287
EP  - 324
VL  - 14
IS  - 1
PB  - Université Bordeaux I
UR  - https://jtnb.centre-mersenne.org/item/JTNB_2002__14_1_287_0/
LA  - en
ID  - JTNB_2002__14_1_287_0
ER  - 
%0 Journal Article
%A Hans Roskam
%T Artin's primitive root conjecture for quadratic fields
%J Journal de théorie des nombres de Bordeaux
%D 2002
%P 287-324
%V 14
%N 1
%I Université Bordeaux I
%U https://jtnb.centre-mersenne.org/item/JTNB_2002__14_1_287_0/
%G en
%F JTNB_2002__14_1_287_0
Hans Roskam. Artin's primitive root conjecture for quadratic fields. Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 1, pp. 287-324. https://jtnb.centre-mersenne.org/item/JTNB_2002__14_1_287_0/

[1] E. Artin, The collected papers of Emil Artin, (eds S. Lang, J. Tate). Addison-Wesley, 1965. | MR | Zbl

[2] H. Bilharz, Primdivisoren mit vorgegebener Primitivwurzel. Math. Ann. 114 (1937), 476-492. | JFM | MR | Zbl

[3] G. Cooke, P.J. Weinberger, On the construction of division chains in algebraic number fields, with applications to SL2. Commun. Algebra 3 (1975), 481-524. | MR | Zbl

[4] H.W. Lenstra, JR, On Artin's conjecture and Euclid's algorithm in global fields. Inv. Math. 42 (1977), 201-224. | MR | Zbl

[5] C. Hooley, On Artin's conjecture. J. Reine Angew. Math. 225 (1967), 209-220. | MR | Zbl

[6] P. Moree, Approximation of singular series and automata. Manuscripta Math. 101 (2000), 385-399. | MR | Zbl

[7] M. Ram Murty, On Artin's Conjecture. J. Number Theory 16 (1983), 147-168. | MR | Zbl

[8] H. Roskam, A quadratic analogue of Artin's conjecture on primitive roots. J. Number Theory 81 (2000), 93-109. Errata in J. Number Theory 85 (2000), 108. | MR | Zbl

[9] H. Roskam Prime Divisors of linear recurrences and Artin's primitive root conjecture for number fields. J. Théor. Nombres Bordeaux 13 (2001), 303-314. | Numdam | MR | Zbl

[10] J.-P. Serre, Quelques applications du théorème de densité de Chebotarev. Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323-401. | Numdam | MR | Zbl

[11] J.-P. Serre, Local Fields (2nd corrected printing). Springer-Verlag, New York, 1995. | MR

[12] P.J. Weinberger, On euclidean rings of algebraic integers. Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), 321-332. Amer. Math. Soc., Providence, R. I., 1973. | MR | Zbl