In the previous paper [15], we determined the structure of the Galois groups
Dans l’article [15], nous donnions dans une table la structure des groupes de Galois
@article{JTNB_2001__13_2_633_0, author = {Ken Yamamura}, title = {Maximal unramified extensions of imaginary quadratic number fields of small conductors, {II}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {633--649}, publisher = {Universit\'e Bordeaux I}, volume = {13}, number = {2}, year = {2001}, zbl = {1013.11076}, mrnumber = {1879676}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2001__13_2_633_0/} }
TY - JOUR AU - Ken Yamamura TI - Maximal unramified extensions of imaginary quadratic number fields of small conductors, II JO - Journal de théorie des nombres de Bordeaux PY - 2001 SP - 633 EP - 649 VL - 13 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2001__13_2_633_0/ LA - en ID - JTNB_2001__13_2_633_0 ER -
%0 Journal Article %A Ken Yamamura %T Maximal unramified extensions of imaginary quadratic number fields of small conductors, II %J Journal de théorie des nombres de Bordeaux %D 2001 %P 633-649 %V 13 %N 2 %I Université Bordeaux I %U https://jtnb.centre-mersenne.org/item/JTNB_2001__13_2_633_0/ %G en %F JTNB_2001__13_2_633_0
Ken Yamamura. Maximal unramified extensions of imaginary quadratic number fields of small conductors, II. Journal de théorie des nombres de Bordeaux, Tome 13 (2001) no. 2, pp. 633-649. https://jtnb.centre-mersenne.org/item/JTNB_2001__13_2_633_0/
[1] Imaginary quadratic fields k with cyclic Cl2(k1). J. Number Theory 67 (1997), 229-245. | MR | Zbl
, , ,[2] III, The 4-class ranks of quadratic extensions of certain real quadratic fields. J. Number Theory 33 (1989), 18-39. | MR | Zbl
,[3] Number fields with class number congruent to 4 mod 8 and Hilbert's Theorem 94. J. Number Theory 8 (1976), 271-279. | MR | Zbl
,[4] Polynomials with Galois group PSL(2,7). Comm. Algebra 8 (1980), 983-992. | MR | Zbl
,[5] The class number one problem for dihedral CM-fields. In: Algebraic number theory and Diophantine analysis, F. Halter-Koch and R. F. Tichy eds. (Graz, 1998), de Gruyter, Berlin, 2000, 249-275. | MR | Zbl
, ,[6] Ideal class groups of cyclotomic number fields. I. Acta Arith. 72 (1998), 59-70. | MR | Zbl
,[7] The class number one problem for the dihedral and dicyclic CM-fields. Colloq. Math. 80 (1999), 259-265. | MR | Zbl
,[8] Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one. Acta Arith. 67 (1994), 47-62. | MR | Zbl
, ,[9] Some analytic estimates of class numbers and discriminants. Invent. Math. 29 (1975), 275-286. | MR | Zbl
,[10] Discriminant bounds, (unpublished tables), Nov. 29th 1976; available from http://www.dtc.umn.edu/odlyzko/unpublished/index.html
,[11] Über die Darstellung der symmetrischen und alternierenden Gruppe durch gebrochene lineare substitutionen. J. Reine Angew. Math. 139 (1911), 155-250. | JFM
,[12] Group theory. I Grundlehren der Mathematischen Wissenschaften 247, Springer-Verlag, Berlin-New York, 1982. | MR | Zbl
,[13] Class numbers of imaginary abelian number fields. I. Tôhoku Math. J. (2) 23 (1971), 97-104. | MR | Zbl
,[14] Divisibility by 16 of class numbers of quadratic fields whose 2-class groups are cyclic. Osaka J. Math. 21 (1984), 1-22. | MR | Zbl
,[15] Maximal unramified extensions of imaginary quadratic number fields of small conductors. J. Théor. Nombres Bordeaux 9 (1997), 405-448. | Numdam | MR | Zbl
,[16] Maximal unramified extensions of real quadratic number fields of small conductors, in preparation.
,[17] The non-normal quartic CM-fields and the octic dihedral CM-fields with class number two. J. Number Theory 79 (1999), 175-193. | MR | Zbl
, ,