On a pour est le premier coefficient de Fourier de forme de Maass correspondant à la valeur propre à laquelle le série de Hecke est attachée. Ce résultat fournit l’estimation nouvelle
We have for is the first Fourier coefficient of the Maass wave form corresponding to the eigenvalue to which the Hecke series is attached. This result yields the new bound
@article{JTNB_2001__13_2_453_0, author = {Aleksandar Ivi\'c}, title = {On sums of {Hecke} series in short intervals}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {453--468}, publisher = {Universit\'e Bordeaux I}, volume = {13}, number = {2}, year = {2001}, zbl = {0994.11020}, mrnumber = {1879668}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2001__13_2_453_0/} }
TY - JOUR AU - Aleksandar Ivić TI - On sums of Hecke series in short intervals JO - Journal de théorie des nombres de Bordeaux PY - 2001 SP - 453 EP - 468 VL - 13 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2001__13_2_453_0/ LA - en ID - JTNB_2001__13_2_453_0 ER -
Aleksandar Ivić. On sums of Hecke series in short intervals. Journal de théorie des nombres de Bordeaux, Tome 13 (2001) no. 2, pp. 453-468. https://jtnb.centre-mersenne.org/item/JTNB_2001__13_2_453_0/
[1] The cubic moment of central values of automorphic L-functions. Ann. of Math. (2) 151 (2000), 1175-1216. | MR | Zbl
, ,[2] Van der Corput's Method of Exponential Sums. LMS Lecture Note Series 126, Cambridge University Press, Cambridge, 1991. | MR | Zbl
, ,[3] Area, Lattice Points, and Exponential Sums. London Math. Soc. Monographs 13, Oxford University Press, Oxford, 1996. | MR | Zbl
,[4] The Riemann zeta-function. John Wiley and Sons, New York, 1985. | MR | Zbl
,[5] On some estimates involving the binary additive divisor problem. Quart. J. Math. (Oxford) 46 (1995), 471-483. | MR | Zbl
, ,[6] Small eigenvalues of Laplacian for Γ0 (N). Acta Arith. 56 (1990), 65-82. | Zbl
,[7] The spectral growth of automorphic L-functions. J. Reine Angew. Math. 428 (1992), 139-159. | MR | Zbl
,[8] Heegner points, cycles and Maass forms. Israel J. Math. 84 (1993), 193-227. | MR | Zbl
, ,[9] Special functions and their applications. Dover Publications, Inc., New York, 1972. | MR | Zbl
,[10] Spectral mean-values of automorphic L-functions at special points. Analytic Number Theory: Proc. of a Conference in Honor of H. Halberstam, Vol. 2 (eds. B. C. Berndt et al.), Birkhauser, Boston etc., 1996, 621-632. | MR | Zbl
,[11] Spectral mean values of Maass wave forms. J. Number Theory 42 (1992), 258-284. | MR | Zbl
,[12] The binary additive divisor problem. Ann. Sci. l'École Norm. Sup. 4e série 27 (1994), 529-572. | Numdam | MR | Zbl
,[13] Spectral theory of the Riemann zeta-function. Cambridge University Press, Cambridge, 1997. | MR | Zbl
,