Nous donnons une nouvelle preuve beaucoup plus courte d’un résultat de B. M. M de Weger. Cette preuve est basée sur la théorie des formes linéaires de logarithmes complexes, -adiques et elliptiques, pour lesquelles nous obtenons une majoration en confrontant les résultats de Hajdu et Herendi à ceux de Rémond et Urfels.
In this paper we give a much shorter proof for a result of B.M.M de Weger. For this purpose we use the theory of linear forms in complex and -adic elliptic logarithms. To obtain an upper bound for these linear forms we compare the results of Hajdu and Herendi and Rémond and Urfels.
@article{JTNB_2001__13_2_443_0, author = {Emanuel Herrmann and Attila Peth\"o}, title = {$S$-integral points on elliptic curves - {Notes} on a paper of {B.} {M.} {M.} de {Weger}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {443--451}, publisher = {Universit\'e Bordeaux I}, volume = {13}, number = {2}, year = {2001}, zbl = {1065.11014}, mrnumber = {1881378}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2001__13_2_443_0/} }
TY - JOUR AU - Emanuel Herrmann AU - Attila Pethö TI - $S$-integral points on elliptic curves - Notes on a paper of B. M. M. de Weger JO - Journal de théorie des nombres de Bordeaux PY - 2001 SP - 443 EP - 451 VL - 13 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2001__13_2_443_0/ LA - en ID - JTNB_2001__13_2_443_0 ER -
%0 Journal Article %A Emanuel Herrmann %A Attila Pethö %T $S$-integral points on elliptic curves - Notes on a paper of B. M. M. de Weger %J Journal de théorie des nombres de Bordeaux %D 2001 %P 443-451 %V 13 %N 2 %I Université Bordeaux I %U https://jtnb.centre-mersenne.org/item/JTNB_2001__13_2_443_0/ %G en %F JTNB_2001__13_2_443_0
Emanuel Herrmann; Attila Pethö. $S$-integral points on elliptic curves - Notes on a paper of B. M. M. de Weger. Journal de théorie des nombres de Bordeaux, Tome 13 (2001) no. 2, pp. 443-451. https://jtnb.centre-mersenne.org/item/JTNB_2001__13_2_443_0/
[1] The Magma algebra system I: The user language. J. Symb. Comp., 24, 3/4 (1997), 235-265. (See also the Magma home page at http://www.maths.usyd.edu.au:8000/u/magma/) | MR | Zbl
, , ,[2] Minorations de formes linéaires de logarithmes elliptiques. Mém. Soc. Math. France(N.S.) 62 (1995). | Numdam | MR | Zbl
,[3] Computing integral points on elliptic curves. Acta Arith. 68 (1994), 171-192. | MR | Zbl
, , ,[4] Computing S-integral points on elliptic curves. Algorithmic number theory (Talence, 1996), 157-171, Lecture Notes in Comput. Sci. 1122, Springer, Berlin, 1996. | MR | Zbl
, , ,[5] Computing all S-integral points on elliptic curves. Math. Proc. Cambr. Phil. Soc. 127 (1999), 383-402. | MR | Zbl
, , , ,[6] Approximation diophantienne de logarithmes elliptiques p-adiques. J. Numb. Th. 57 (1996), 133-169. | MR | Zbl
, ,[7] The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics 106, Springer-Verlag, New York, 1986. | MR | Zbl
,[8] S-integral Points on elliptic curves. Math. Proc. Cambr. Phil. Soc. 116 (1994), 391-399. | MR | Zbl
,[9] Algorithm for determining the type of a singular fibre in an elliptic pencil. Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), 33-52, Lecture Notes in Math. 476, Springer, Berlin, 1975. | MR
,[10] Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations. Acta Arith. 75 (1996), 165-190. | MR | Zbl
,[11] Algorithms for Diophantine equations. PhD Thesis, Centr. for Wiskunde en Informatica, Amsterdam, 1987. | Zbl
,[12] S-integral solutions to a Weierstrass equation, J. Théor. Nombres Bordeaux 9 (1997), 281-301. | Numdam | MR | Zbl
,[13] Arithmetic of plane elliptic curves, ftp://ftp.math.mcgill.ca/pub/apecs.
,[14] mwrank, a package to compute ranks of elliptic curves over the rationals. http://www.maths.nott.ac.uk/personal/jec/ftp/progs.
[15] Simath, a computer algebra system for algorithmic number theory. http://simath.math.unisb.de.