We give a down-to-earth introduction to the theory of families of modular forms, and discuss elementary proofs of results suggesting that modular forms come in families.
Nous donnons une introduction terre à terre de la théorie des familles de formes modulaires, et discutons des démonstrations élémentaires de résultats suggérant que les formes modulaires apparaissent sous forme de familles.
@article{JTNB_2001__13_1_43_0,
author = {Kevin Buzzard},
title = {Families of modular forms},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {43--52},
year = {2001},
publisher = {Universit\'e Bordeaux I},
volume = {13},
number = {1},
zbl = {1052.11036},
mrnumber = {1838069},
language = {en},
url = {https://jtnb.centre-mersenne.org/item/JTNB_2001__13_1_43_0/}
}
Kevin Buzzard. Families of modular forms. Journal de théorie des nombres de Bordeaux, Tome 13 (2001) no. 1, pp. 43-52. https://jtnb.centre-mersenne.org/item/JTNB_2001__13_1_43_0/
[C] , p-adic Banach spaces and families of modular forms. Invent. Math. 127 (1997), 417-479. | Zbl | MR
[CM] , , The eigencurve. In Galois representations in arithmetic algebraic geometry (Durham, 1996), CUP 1998, 1-113. | Zbl | MR
[GM] , , Families of modular eigenforms. Math. Comp. 58 no. 198 (1992), 793-805. | Zbl | MR
[S] , Introduction to the arithmetic theory of automorphic functions. Princeton University Press, 1994. | Zbl | MR
[T] , Princeton PhD thesis.
[U] , Slopes of modular forms. Contemp. Math. 174 (1994), 167-183. | Zbl | MR
[W] , Dimension variation of classical and p-adic modular forms. Invent. Math. 133 (1998), 449-463. | Zbl | MR