The representation of almost all numbers as sums of unlike powers
Journal de théorie des nombres de Bordeaux, Volume 13 (2001) no. 1, pp. 227-240.

We prove in this article that almost all large integers have a representation as the sum of a cube, a biquadrate, ..., and a tenth power.

Nous prouvons dans cet article que presque tout entier s'écrit comme la somme d'un cube, d'un bicarré, ..., et d'une puissance dixième.

@article{JTNB_2001__13_1_227_0,
     author = {M. B. S. Laporta and T. D. Wooley},
     title = {The representation of almost all numbers as sums of unlike powers},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {227--240},
     publisher = {Universit\'e Bordeaux I},
     volume = {13},
     number = {1},
     year = {2001},
     zbl = {1048.11074},
     mrnumber = {1838083},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/item/JTNB_2001__13_1_227_0/}
}
TY  - JOUR
AU  - M. B. S. Laporta
AU  - T. D. Wooley
TI  - The representation of almost all numbers as sums of unlike powers
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2001
DA  - 2001///
SP  - 227
EP  - 240
VL  - 13
IS  - 1
PB  - Université Bordeaux I
UR  - https://jtnb.centre-mersenne.org/item/JTNB_2001__13_1_227_0/
UR  - https://zbmath.org/?q=an%3A1048.11074
UR  - https://www.ams.org/mathscinet-getitem?mr=1838083
LA  - en
ID  - JTNB_2001__13_1_227_0
ER  - 
%0 Journal Article
%A M. B. S. Laporta
%A T. D. Wooley
%T The representation of almost all numbers as sums of unlike powers
%J Journal de théorie des nombres de Bordeaux
%D 2001
%P 227-240
%V 13
%N 1
%I Université Bordeaux I
%G en
%F JTNB_2001__13_1_227_0
M. B. S. Laporta; T. D. Wooley. The representation of almost all numbers as sums of unlike powers. Journal de théorie des nombres de Bordeaux, Volume 13 (2001) no. 1, pp. 227-240. https://jtnb.centre-mersenne.org/item/JTNB_2001__13_1_227_0/

[1] J. Brüdern, Sums of squares and higher powers. II. J. London Math. Soc. (2) 35 (1987), 244-250. | MR | Zbl

[2] J. Brüdern, A problem in additive number theory. Math. Proc. Cambridge Philos. Soc. 103 (1988), 27-33. | MR | Zbl

[3] J. Brüdern, T.D. Wooley, On Waring's problem: two cubes and seven biquadrates. Tsukuba Math. J. 24 (2000), 387-417. | MR | Zbl

[4] H. Davenport, H. Heilbronn, On Waring's problem: two cubes and one square. Proc. London Math. Soc. (2) 43 (1937), 73-104. | JFM | Zbl

[5] K.B. Ford, The representation of numbers as sums of unlike powers. J. London Math. Soc. (2) 51 (1995), 14-26. | MR | Zbl

[6] K.B. Ford, The representation of numbers as sums of unlike powers. II. J. Amer. Math. Soc. 9 (1996), 919-940. | MR | Zbl

[7] C. Hooley, On a new approach to various problems of Waring's type. In: Recent progress in analytic number theory, vol. 1 (Durham, 1979), Academic Press, London (1981), 127-191. | MR | Zbl

[8] K.F. Roth, Proof that almost all positive integers are sums of a square, a positive cube and a fourth power. J. London Math. Soc. 24 (1949), 4-13. | MR | Zbl

[9] K.F. Roth, A problem in additive number theory. Proc. London Math. Soc. (2) 53 (1951), 381-395. | MR | Zbl

[10] K. Thanigasalam, On additive number theory. Acta Arith. 13 (1967/68), 237-258. | EuDML | MR | Zbl

[11] K. Thanigasalam, On sums of powers and a related problem. Acta Arith. 36 (1980), 125-141. | EuDML | MR | Zbl

[12] K. Thanigasalam, On certain additive representations of integers. Portugal. Math. 42 (1983/84), 447-465. | EuDML | MR | Zbl

[13] R.C. Vaughan, On the representation of numbers as sums of powers of natural numbers. Proc. London Math. Soc. (3) 21 (1970), 160-180. | MR | Zbl

[14] R.C. Vaughan, On sums of mixed powers. J. London Math. Soc. (2) 3 (1971), 677-688. | MR | Zbl

[15] R.C. Vaughan, A ternary additive problem. Proc. London Math. Soc. (3) 41 (1980), 516-532. | MR | Zbl

[16] R.C. Vaughan, On Waring's problem for cubes. J. Reine Angew. Math. 365 (1986), 122-170. | EuDML | MR | Zbl

[17] R.C. Vaughan, On Waring's problem for smaller exponents. Proc. London Math. Soc. (3) 52 (1986), 445-463. | MR | Zbl

[18] R.C. Vaughan, A new iterative method in Waring's problem. Acta Math. 162 (1989), 1-71. | MR | Zbl

[19] R.C. Vaughan, The Hardy-Littlewood method. Cambridge Tract No. 125, 2nd Edition, Cambridge University Press, 1997. | MR | Zbl

[20] R.C. Vaughan, T.D. Wooley, On Waring's problem: some refinements. Proc. London Math. Soc. (3) 63 (1991), 35-68. | MR | Zbl

[21] R.C. Vaughan, T.D. Wooley, Further improvements in Waring's problem. Acta Math. 174 (1995), 147-240. | MR | Zbl

[22] R.C. Vaughan, T.D. Wooley, Further improvements in Waring's problem, IV: higher powers. Acta Arith. 94 (2000), 203-285. | EuDML | MR | Zbl

[23] T.D. Wooley, On simultaneous additive equations, II. J. Reine Angew. Math. 419 (1991), 141-198. | EuDML | MR | Zbl

[24] T.D. Wooley, Large improvements in Waring's problem. Ann. of Math. (2) 135 (1992), 131-164. | MR | Zbl

[25] T.D. Wooley, New estimates for smooth Weyl sums. J. London Math. Soc. (2) 51 (1995), 1-13. | MR | Zbl

[26] T.D. Wooley, Breaking classical convexity in Waring's problem: sums of cubes and quasi-diagonal behaviour. Invent. Math. 122 (1995), 421-451. | EuDML | MR | Zbl