Soit une courbe elliptique sur , soit un corps quadratique imaginaire, et soit une -extension de . Étant donné un ensemble de places de contenant les places au dessus de et les places de mauvaise réduction de , nous notons l’extension maximale de non ramifiée en-dehors de . Cet article est consacré à l’étude de la structure des groupes de cohomologie pour et de la composante -primaire du groupe de Selmer Sel, considérés comme modules discrets sur l’algèbre d’Iwasawa de
Let be an elliptic curve over , let be an imaginary quadratic field, and let be a -extension of . Given a set of primes of , containing the primes above , and the primes of bad reduction for , write for the maximal algebraic extension of which is unramified outside . This paper is devoted to the study of the structure of the cohomology groups for and of the -primary Selmer group Sel, viewed as discrete modules over the Iwasawa algebra of
@article{JTNB_2001__13_1_1_0, author = {Massimo Bertolini}, title = {Iwasawa theory for elliptic curves over imaginary quadratic fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1--25}, publisher = {Universit\'e Bordeaux I}, volume = {13}, number = {1}, year = {2001}, zbl = {1061.11058}, mrnumber = {1838067}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2001__13_1_1_0/} }
TY - JOUR AU - Massimo Bertolini TI - Iwasawa theory for elliptic curves over imaginary quadratic fields JO - Journal de théorie des nombres de Bordeaux PY - 2001 SP - 1 EP - 25 VL - 13 IS - 1 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2001__13_1_1_0/ LA - en ID - JTNB_2001__13_1_1_0 ER -
Massimo Bertolini. Iwasawa theory for elliptic curves over imaginary quadratic fields. Journal de théorie des nombres de Bordeaux, Tome 13 (2001) no. 1, pp. 1-25. https://jtnb.centre-mersenne.org/item/JTNB_2001__13_1_1_0/
[1] Selmer groups and Heegner points in anticyclotomic Zp-extensions. Compositio Math. 99 (1995), 153-182. | Numdam | MR | Zbl
,[2] An annihilator for the p-Selmer group by means of Heegner points. Atti Acc. Naz. Lincei, Classe di Sc. Fis., Mat. e Nat., Rendiconti Lincei, Mat. e Appl., Serie 9, Vol. 5, Fasc. 2 (1994), 129-140. | MR | Zbl
,[3] Growth of Mordell-Weil groups in anticyclotomic towers. Symposia Mathematica, Proceedings of the Symposium in Arithmetic Geometry, Cortona 1994, E. Bombieri, et al., eds., Cambridge Univ. Press, to appear. | MR | Zbl
,[4] Derived heights and generalized Mazur-Tate regulators. Duke Math. Journal 76 (1994), 75-111. | MR | Zbl
, ,[5] Heegner points on Mumford-Tate curves. Inventiones Math., to appear. | Zbl
, ,[6] Kummer theory for Abelian varieties over local fields. Inventiones Math. 124 (1996), 129-174. | MR | Zbl
, ,[7] Iwasawa theory of modular elliptic curves of analytic rank at most 1. J. London Math. Soc. (2) 50 (1994), 243-264. | MR | Zbl
, ,[8] Iwasawa theory for p-adic representations. Algebraic Number Theory- in honor of K. Iwasawa, J. Coates et al., editors, Advanced Studies in Pure Mathematics, 1989, Academic Press. | MR | Zbl
,[9] Cyclotomic fields I and II (Combined second edition,) GTM 121, 1990, Springer. | MR | Zbl
,[10] Rational points of Abelian Varieties with values in towers of number fields. Inventiones Math. 18 (1972), 183-266. | MR | Zbl
,[11] Modular Curves and Arithmetic, Proc. Int. Cong. of Math. 1983, Warszawa. | Zbl
,[12] Elliptic curves and towers of number fields. Unpublished manuscript.
,[13] Arithmetic duality theorems. Perspective in Math., Academic Press, 1986. | MR | Zbl
,[14] Fonctions L p-adiques, Théorie d'Iwasawa et points de Heegner. Bull. Soc. Math. de France 115 (1987), 399-456. | Numdam | MR | Zbl
,[15] Théorie d'Iwasawa et hauteurs p-adiques. Inventiones Math. 109 (1992), 137-185. | MR | Zbl
,[16] On L-functions of elliptic curves and anti-cyclotomic towers. Inventiones Math. 64 (1984), 393-408. | Zbl
,[17] On L-functions of elliptic curves and cyclotomic towers. Inventiones Math. 75 (1984), 409-423. | MR | Zbl
,[18] Iwasawa L-functions of varieties over algebraic number fields. A first approach. Inventiones Math. 71 (1983), 251-293. | MR | Zbl
,[19] p-adic height pairings II. Inventiones Math. 79 (1985), 329-374. | MR | Zbl
,[20] Arithmetic of formal groups and applications. I. Universal norm subgroups. Inventiones Math. 87 (1987), 587-602. | MR | Zbl
,[21] Cohomologie Galoisienne. LNM 5 (cinquième édition), Springer, 1994. | MR | Zbl
,