Sur la conjecture de Langlands locale pour GL n
Journal de théorie des nombres de Bordeaux, Tome 13 (2001) no. 1, pp. 167-187.

Nous développons une variante de notre démonstration des conjectures de Langlands pour GL n sur les corps p-adiques. Cette variante soulève d’intéressants problèmes de plongement avec ramification prescrite. Nous examinons également les propriétés de naturalité de la correspondance locale et des conséquences globales de cette variante.

We propose a variant to our proof of the Langlands conjecture for GL n over p-adic fields, a variant which raises some interesting embedding problems with prescribed ramification. We also investigate various naturality properties of the local correspondence and the global consequences of that proof.

@article{JTNB_2001__13_1_167_0,
     author = {Guy Henniart},
     title = {Sur la conjecture de {Langlands} locale pour $GL_n$},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {167--187},
     publisher = {Universit\'e Bordeaux I},
     volume = {13},
     number = {1},
     year = {2001},
     zbl = {1048.11093},
     mrnumber = {1838079},
     language = {fr},
     url = {https://jtnb.centre-mersenne.org/item/JTNB_2001__13_1_167_0/}
}
TY  - JOUR
AU  - Guy Henniart
TI  - Sur la conjecture de Langlands locale pour $GL_n$
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2001
SP  - 167
EP  - 187
VL  - 13
IS  - 1
PB  - Université Bordeaux I
UR  - https://jtnb.centre-mersenne.org/item/JTNB_2001__13_1_167_0/
LA  - fr
ID  - JTNB_2001__13_1_167_0
ER  - 
%0 Journal Article
%A Guy Henniart
%T Sur la conjecture de Langlands locale pour $GL_n$
%J Journal de théorie des nombres de Bordeaux
%D 2001
%P 167-187
%V 13
%N 1
%I Université Bordeaux I
%U https://jtnb.centre-mersenne.org/item/JTNB_2001__13_1_167_0/
%G fr
%F JTNB_2001__13_1_167_0
Guy Henniart. Sur la conjecture de Langlands locale pour $GL_n$. Journal de théorie des nombres de Bordeaux, Tome 13 (2001) no. 1, pp. 167-187. https://jtnb.centre-mersenne.org/item/JTNB_2001__13_1_167_0/

[AC] J. Arthur, L. Clozel, Simple algebras, base change, and the advanced theory of the trace formula. Annals of Math. Studies 120, Princeton University Press, 1989. | MR | Zbl

[BHK] C. Bushnell, G. Henniart, P. Kutzko, Correspondance de Langlands locale pour GLn et conducteurs de paires. Ann. Scient. Éc. Norm. Sup. (4) 31 (1998), 537-560. | Numdam | MR | Zbl

[Ca1] H. Carayol, Non-abelian Lubin-Tate theory. In L. Clozel and J.S. Milne eds, " Automorphic forms, Shimura varieties and L-functions II", Academic Press, 1990. | MR | Zbl

[Ca2] H. Carayol, Preuve de la conjecture de Langlands locale pour GLn: travaux de Harris-Taylor et Henniart. Séminaire Bourbaki, exposé 857, mars 1999, Astérisque (2000), 191-243. | Numdam | MR | Zbl

[Cl1] L. Clozel, Représentations galoisiennes associées aux représentations automorphes autoduales de GL(n). Publ. Math. I.H.E.S. 73 (1991), 97-145. | Numdam | MR | Zbl

[C12] L. Clozel, On the cohomology of Kottwitz's arithmetic varieties. Duke Math. J. 72 (1993), 757-795. | MR | Zbl

[CL] L. Clozel, J.-P. Labesse, Changement de base pour les représentations cohomologiques de certains groupes unitaires. Astérisque 257 (1999), 161 pp. | MR | Zbl

[Ha1] M. Harris, Supercuspidal representations in the cohomology of Drinfel'd upper halfspaces ; elaboration of Carayol's program. Invent. Math. 129 (1997), 75-120. | MR | Zbl

[Ha2] M. Harris, The local Langlands conjecture for GL(n) over a p-adic field, n < p. Invent. Math. 134 (1998), 177-210. | MR | Zbl

[HaT] M. Harris, R. Taylor, On the geometry and cohomology of some simple Shimura varieties. Versions préliminaires, juillet et novembre 1998, juin 1999. | Zbl

[He1] G. Henniart, La Conjecture de Langlands pour GL(3). Mém. Soc. Math. France, nouvelle série 12 (1984), 186 pp.. | Numdam | MR | Zbl

[He2] G. Henniart, On the local Langlands conjecture for GL(n) : the cyclic case. Ann. Math. 123 (1986), 145-203. | MR | Zbl

[He3] G. Henniart, La conjecture de Langlands numérique pour GL (n). Ann. Scient. Éc. Norm. Sup. 21 (1988), 497-544. | Numdam | MR | Zbl

[He4] G. Henniart, Caractérisation de la correspondance de Langlands par les facteurs ε de paires. Invent. Math. 113 (1993), 339-350. | Zbl

[He5] G. Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique. Invent. Math. 139 (2000), 439-456. | MR | Zbl

[He6] G. Henniart, A report on the proof of the Langlands conjectures for GL(n) over p-adic fields. Exposé à la conférence "Current developments in Mathematics" de novembre 1999, à paraître en 2001. | MR

[He7] G. Henniart, Relèvement global d'extensions locales: quelques problèmes de plongement. Math. Annalen 319 (2001), 75-88. | MR | Zbl

[HH] G. Henniart, R. Herb, Automorphic induction for GL(n) (over local non-archimedean fields). Duke Math. J. 78 (1996), 131-192. | MR | Zbl

[JPSS] H. Jacquet, I.I. Piatetski-Shapiro, J. Shalika, Rankin-Selberg convolutions. Amer. J. Math. 105 (1983), 367-483. | MR | Zbl

[Ko] R. Kottwitz, On the λ-adic representations associated to some simple Shimura varieties. Invent. Math. 108 (1992), 653-665. | Zbl

[Lf] L. Lafforgue, La correspondance de Langlands sur les corps de fonctions. Version préliminaire, manuscrit, 1999.

[Lg] S. Lang, Algebraic Number Theory. Addison Wesley, New York, 1975. | Zbl

[Lm] G. Laumon, Sur les travaux de L. Lafforgue. Exposé au Séminaire Bourbaki en mars 2000, en préparation.

[Sh] F. Shahidi, Fourier transforms of intertwining operators and Plancherel measures for GL(n). Amer. J. Math. 106 (1984), 67-111. | MR | Zbl

[Ta] J. Tate, Number theoretic background. In A. Borel and W. Casselman eds, Automorphic forms, representations and L-functions, Proc. Symposia in Pure Math. 33 (II) (1979), 3-26. | MR | Zbl