Number fields can be viewed as analogues of curves over fields. Here we use metrized line bundles as analogues of divisors on curves. Van der Geer and Schoof gave a definition of a function
Nous considérons ici certains fibrés en droites métriques comme analogues des diviseurs sur les courbes. Van der Geer et Schoof ont défini une fonction
@article{JTNB_2001__13_1_143_0, author = {Richard P. Groenewegen}, title = {An arithmetic analogue of {Clifford's} theorem}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {143--156}, publisher = {Universit\'e Bordeaux I}, volume = {13}, number = {1}, year = {2001}, zbl = {1069.11044}, mrnumber = {1838077}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2001__13_1_143_0/} }
TY - JOUR AU - Richard P. Groenewegen TI - An arithmetic analogue of Clifford's theorem JO - Journal de théorie des nombres de Bordeaux PY - 2001 SP - 143 EP - 156 VL - 13 IS - 1 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2001__13_1_143_0/ LA - en ID - JTNB_2001__13_1_143_0 ER -
Richard P. Groenewegen. An arithmetic analogue of Clifford's theorem. Journal de théorie des nombres de Bordeaux, Tome 13 (2001) no. 1, pp. 143-156. https://jtnb.centre-mersenne.org/item/JTNB_2001__13_1_143_0/
[1] The function h° for quadratic number fields. These proceedings.
,[2] Algebraic Curves. Addison Wesley, 1989. | MR | Zbl
,[3] Effectivity of Arakelov Divisors and the Theta Divisor of a Number Field. Preprint 1999, version 3. URL: "http://xxx.lanl.gov/abs/math/9802121" . | MR
, ,[4] Algebraic Geometry. Springer-Verlag, 1977. | MR | Zbl
,[5] Algebraische Zahlentheorie. Springer-Verlag, 1992. | Zbl
,