Invariants of a quadratic form attached to a tame covering of schemes
Journal de théorie des nombres de Bordeaux, Tome 12 (2000) no. 2, pp. 597-660.

Nous étendons des résultats de Serre, Esnault-Kahn-Viehweg et Kahn, et nous montrons une relation entre des invariants dans la cohomologie étale modulo 2, qui sont obtenus à partir d’un revêtement modérément ramifié de schémas à ramification impaire. Le premier type d’invariant est construit à l’aide d’une forme quadratique naturelle définie par le revêtement. Dans le cas d’un revêtement de schémas de Dedekind cette forme est donnée par la racine carrée de la codifférente avec la forme trace. Dans le cas d’un revêtement de surfaces de Riemann la forme provient de l’existence d’une caractéristique théta canonique. Le deuxième type d’invariant est défini à l’aide de la représentation du groupe fondamental modéré, qui est attachée au revêtement. Notre formule est valable sans restriction sur la dimension. Pour les revêtements non-ramifiés la formule est due aux auteurs précités. Les deux contributions essentielles de notre travail sont de montrer (1) comment ramener la démonstration de la formule au cas non-ramifié en toute dimension et (2) comment maîtriser les difficultés provenant de la présence de points singuliers dans le lieu de ramification du revêtement, en utilisant ce que nous appelons «normalisation le long d’un diviseur». Notre approche toute entière est basée sur une analyse fine de la structure locale des revêtements modérément ramifiés. Nous présentons aussi un survol des notions de la théorie des formes quadratiques sur les schémas et les techniques simpliciales de base nécessaires pour la compréhension de notre travail.

We build on preceeding work of Serre, Esnault-Kahn-Viehweg and Kahn to establish a relation between invariants, in modulo 2 étale cohomology, attached to a tamely ramified covering of schemes with odd ramification indices. The first type of invariant is constructed using a natural quadratic form obtained from the covering. In the case of an extension of Dedekind domains, mains, this form is the square root of the inverse different equipped with the trace form. In the case of a covering of Riemann surfaces, it arises from a theta characteristic. The second type of invariant is constructed using the representation of the tame fundamental group, which corresponds to the covering. Our formula is valid in arbitrary dimension. For unramified coverings the result was proved by the above authors. The two main contributions of our work consist in (1) showing how to eliminate ramification to reduce to the unramified case, in such a way that the reduction is possible in arbitrary dimension, and; (2) getting around the difficulties, caused by the presence of crossings in the ramification divisor, by introducing what we call “normalisation along a divisor”. Our approach relies on a detailed analysis of the local structure of tame coverings. We include a review of the relevant material from the theory of quadratic forms on schemes and of the basic simplicial techniques needed for our purposes.

@article{JTNB_2000__12_2_597_0,
     author = {Philippe Cassou-Nogu\`es and Boas Erez and Martin J. Taylor},
     title = {Invariants of a quadratic form attached to a tame covering of schemes},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {597--660},
     publisher = {Universit\'e Bordeaux I},
     volume = {12},
     number = {2},
     year = {2000},
     zbl = {01626665},
     mrnumber = {1823205},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_597_0/}
}
TY  - JOUR
AU  - Philippe Cassou-Noguès
AU  - Boas Erez
AU  - Martin J. Taylor
TI  - Invariants of a quadratic form attached to a tame covering of schemes
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2000
SP  - 597
EP  - 660
VL  - 12
IS  - 2
PB  - Université Bordeaux I
UR  - https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_597_0/
LA  - en
ID  - JTNB_2000__12_2_597_0
ER  - 
%0 Journal Article
%A Philippe Cassou-Noguès
%A Boas Erez
%A Martin J. Taylor
%T Invariants of a quadratic form attached to a tame covering of schemes
%J Journal de théorie des nombres de Bordeaux
%D 2000
%P 597-660
%V 12
%N 2
%I Université Bordeaux I
%U https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_597_0/
%G en
%F JTNB_2000__12_2_597_0
Philippe Cassou-Noguès; Boas Erez; Martin J. Taylor. Invariants of a quadratic form attached to a tame covering of schemes. Journal de théorie des nombres de Bordeaux, Tome 12 (2000) no. 2, pp. 597-660. https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_597_0/

[A-B-S] M.F. Atiyah, R. Bott, A. Shapiro, Clifford modules. Topology 3 (1964) suppl.1, 3-38. | MR | Zbl

[Ba1] P. Balmer, Triangular Witt groups. Part I: the 12-term localization exact sequence. K-Theory 19 (2000), 311-363. | MR | Zbl

[Ba2] P. Balmer, Triangular Witt groups. Part II: from usual to derived. Preprint 1999. | MR | Zbl

[B-O] J. Barge, M. Ojanguren, Sur le troisième invariant d'une forme quadratique. K-Theory 9 (1995), no. 3, 233-244. | MR | Zbl

[Be] E.R. Berlekamp, An analog of the discriminant over fields of characteristic two, J. of Algebra 38 (1976), 315-317. | MR | Zbl

[Ber-M] A.-M. Bergé, J. Martinet, Formes quadratiques et extensions en caractéristique 2, Séminaire de Théorie des Nombres de Bordeaux, Exposé 35, année 1982-1983. | MR

[Br] K.S. Brown, Abstract homotopy theory and generalized sheaf cohomology. Trans. Amer. Math. Soc. 186 (1974), 419-458. | MR | Zbl

[Ca] C. Casanova, Invariants des formes quadratiques à valeurs dans la K-théorie et dans la cohomologie étale. Thèse de doctorat, Université de Lausanne, 1999.

[C-E] T. Chinburg, B. Erez, Equivariant Euler-Poincaré characteristics and tameness. Journées Arithmétiques, 1991. Astérisque 209 (1992), 13, 179-194. | MR | Zbl

[CEPT1] T. Chinburg, B. Erez, G. Pappas, M.J. Taylor, Tame actions of group schemes: integrals and slices. Duke Math. J. 82 (1996), no. 2, 269-308. | MR | Zbl

[CEPT2] T. Chinburg, B. Erez, G. Pappas, M.J. Taylor, ∈-constants and the Galois structure of de Rham cohomology. Ann. of Math. (2)146 (1997), no. 2, 411-447. | Zbl

[C-P-T1] T. Chinburg, G. Pappas, M.J. Taylor, ∈-constants and equivariant Arakelov Euler characteristics. Preprint, 2000.

[C-P-T2] T. Chinburg, G. Pappas, M.J. Taylor, Discriminants and Arakelov Euler characteristics. Preprint, 2000. | MR

[Cu] E.B. Curtis, Simplicial homotopy theory. Advances in Math. 6 (1971), 107-209. | MR | Zbl

[Deg] J.-Y. Degos, Classes caractéristiques de représentations galoisiennes et invariants d'algèbres étales sur un corps de caractéristique 2, Thèse, Univ. Bordeaux1, 2000.

[Del] P. Deligne, Quadriques. Exposé XII in Groupes de monodromie en géométrie algébrique. II. SGA 7 II. Dirigé par P. Deligne et N. Katz. Lecture Notes in Mathematics, 340. Springer-Verlag, Berlin-New York, 1973. | MR | Zbl

[Dz] A. Delzant, Définition des classes de Stiefel-Whitney d'un module quadratique sur un corps de caractéristique différente de 2. C. R. Acad. Sci. Paris 255 (1962), 1366-1368. | MR | Zbl

[D-G] M. Demazure, P. Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs. Avec un appendice Corps de classes local par Michiel Hazewinkel. Masson et Cie, Editeur, Paris; North-Holland Publishing Co., Amsterdam, 1970. | MR | Zbl

[EGAI] A. Grothendieck, J. Dieudonné, Eléments de géométrie algébrique, I: Le langage des schemas, second edition, Grundleheren der Math. Wiss. 166, Springer, Berlin, 1971. | Zbl

[EGAII] A. Grothendieck, J. Dieudonné, Eléments de géométrie algébrique, II: Etude globale élémentaire de quelques classes de morphismes, Inst. Hautes Etudes Sci. Publ. Math. 8 (1961). | Numdam | MR | Zbl

[EGAIV] A. Grothendieck, J. Dieudonné, Eléments de géométrie algébrique, IV: Etude locale des schémas et des morphismes de schémas, Inst. Hautes Etudes Sci. Publ. Math. 20, 24, 28, 32 (1964-1967). | Numdam | MR | Zbl

[E1] B. Erez, A survey of recent work on the square root of the inverse different. Journées Arithmétiques, 1989. Astérisque 198-200 (1991), 133-152 (1992). | MR | Zbl

[E2] B. Erez, Geometric trends in Galois module theory., 116-145, in Galois representations and arithmetic algebraic geometry, eds A.J. Scholl and R.L. Taylor, LMS Lecture Notes 254, Cambridge University Press, Cambridge, 1998. | MR | Zbl

[E-T] B. Erez, M.J. Taylor, Hermitian modules in Galois extensions of number fields and Adams operations. Ann. of Math. 135 (1992), no. 2, 271-296. | MR | Zbl

[E-K-V] H. Esnault, B. Kahn, E. Viehweg, Coverings with odd ramification and Stiefel-Whitney classes. J. reine angew. Math. 441 (1993), 145-188. | MR | Zbl

[E-K-L-V] H. Esnault, B. Kahn, M. Levine, E. Viehweg, The Arason invariant and mod 2 algebraic cycles. J. Amer. Math. Soc. 11 (1998), no. 1, 73-118. | MR | Zbl

[F-P] E. Friedlander, B. Parshall, Etale cohomology of reductive groups, Lect. Notes in Math. 854 (1981), 127-140, Springer, Berlin. | MR | Zbl

[F1] A. Fröhlich, Galois module structure of algebraic integers. Ergebnisse der Math. und ihrer Grenzgebiete (3) 1. Springer-Verlag, Berlin-New York, 1983. | MR | Zbl

[F] A. Fröhlich, Orthogonal representations of Galois groups, Stiefel-Whitney classes and Hasse-Witt invariants. J. reine angew. Math. 360 (1985), 84-123. | MR | Zbl

[G-Z] P. Gabriel, M. Zisman, Calculus of fractions and homotopy theory. Erg. der Math. und ihrer Grenzgebiete, 35 Springer-Verlag New York, Inc., New York 1967 | MR | Zbl

[G1] C.H. Giffen, Hasse-Witt invariants for (α, u)-reflexive forms and automorphisms. I. Algebraic K2-valued Hasse-Witt invariants. J. Algebra 44 (1977), no. 2, 434-456. | Zbl

[G2] C.H. Giffen, Hermitian forms and higher algebraic K-theory. Bull. Amer. Math. Soc. 83 (1977), no. 6, 1303-1305. | MR | Zbl

[Gil] H. Gillet, Riemann-Roch theorems for higher algebraic K-theory. Adv. in Math. 40 (1981), 203-289. | MR | Zbl

[Gir] J. Giraud, Cohomologie non abélienne. Grundlehren der Math. Wiss. 179, Springer, Berlin, 1971. | MR | Zbl

[Go-Ja] P.G. Goerss, J.F. Jardine, Simplicial homotopy theory. Progress in Mathematics, 174. Birkhäuser Verlag, Basel, 1999. | MR | Zbl

[Gr] A. Grothendieck, Classes de Chern et représentations linéaires des groupes discrets. Dix Exposés sur la Cohomologie des Schémas, pp. 215-305, North-Holland, Amsterdam; Masson, Paris, 1968. | MR | Zbl

[Gr-M] A. Grothendieck, J.P. Murre, The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme. Lect. Notes in Math., 208. Springer-Verlag, Berlin-New York, 1971. | MR | Zbl

[Ha] R. Hartshorne, Algebraic geometry. Graduate Texts in Mathematics, 52. Springer-Verlag, New York-Heidelberg, 1977. | MR | Zbl

[J1] J.F. Jardine, Universal Hasse-Witt classes. Algebraic K-theory and algebraic number theory, 83-100, Contemp. Math., 83, Amer. Math. Soc., Providence, RI, 1989. | MR | Zbl

[J2] J.F. Jardine, Cohomological invariants associated to symmetric bilinear forms. Exposition. Math. 10 (1992), no. 2, 97-134. | MR | Zbl

[J3] J.F. Jardine, Homotopy and homotopical algebra, in Handbook of algebra, Vol. 1, 639-669, North-Holland, Amsterdam, 1996. | MR | Zbl

[J4] J.F. Jardine, Higher spinor classes. Mem. Amer. Math. Soc. 528 (1994). | MR | Zbl

[J5] J.F. Jardine, Simplicial objects in a Grothendieck topos. Contemporary Math. 55 (I)(1986), 193-239. | MR | Zbl

[K] B. Kahn, Equivariant Stiefel-Whitney classes. J. Pure Appl. Algebra 97 (1994), no. 2, 163-188. | MR | Zbl

[Ka-M] N. Katz, B. Mazur, Arithmetic moduli of elliptic curves. Ann. of Math. Studies, Princeton Univ. Press, Princeton, 1985. | MR | Zbl

[Kne] M. Knebusch, Symmetric bilinear forms over algebraic varieties, Conference on Quadratic Forms-1976, pp. 103-283 ed. G. Orzech. Queen's Papers in Pure and Appl. Math., 46, Queen's Univ., Kingston, Ont., 1977. | MR | Zbl

[Knu] M-A. Knus, Quadratic and Hermitian forms over rings. Grundlehren der Math. Wiss. 294, Springer-Verlag, Berlin, 1991. | MR | Zbl

[K-O1] M-A. Knus, M. Ojanguren, Théorie de la descente et algèbres d'Azumaya. Lecture Notes in Math., 389. Springer-Verlag, Berlin-New York, 1974. | MR | Zbl

[K-O2] M-A. Knus, M. Ojanguren, The Clifford algebra of a metabolic space. Arch. Math. 56 (1991), no. 5, 440-445. | MR | Zbl

[La] O. Laborde, Classes de Stiefel- Whitney en cohomologie étale. Colloque sur les Formes Quadratiques (Montpellier, 1975). Bull. Soc. Math. France Suppl. Mem. 48 (1976), 47-51. | Numdam | MR | Zbl

[L-W] R. Lee, S. Weintraub, Invariants of branched covering from the work of Serre and Mumford. Forum Math. 8 (1996), no. 5, 535-568. | MR | Zbl

[Mac] S. Maclane, Categories for the working mathematician. Graduate Texts in Math., 5. Springer-Verlag, New York-Berlin, 1971. | MR | Zbl

[Mac-Mo] S. Maclane, I. Moerdijk, Sheaves in geometry and logic. A first introduction to topos theory. Corrected reprint of the 1992 edition. Universitext. Springer-Verlag, New York, 1994. | MR | Zbl

[Ma1] J.P. May, Simplicial objects in algebraic topology. Reprint of the 1967 original. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1992. | MR | Zbl

[M-R] A. Micali, P. Revoy, Modules quadratiques, Bull. Soc. Math. France, Mémoire 63 (1979), Soc. Math. de France, Paris. | Numdam | MR | Zbl

[Mi] J.S. Milne, Etale cohomology. Princeton Mathematical Series, 33. Princeton University Press, Princeton, N.J., 1980. | MR | Zbl

[M-H] J.W. Milnor, D. Husemoller, Symmetric bilinear forms. Erg. der Math. und ihrer Grenzgebiete, 73. Springer-Verlag, New York-Heidelberg, 1973. | MR | Zbl

[M-S] J.W. Milnor, J.D. Stasheff, Characteristic classes. Annals of Mathematics Studies, 76. Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. | MR | Zbl

[Mo] J. Morales, L'invariant de Hasse-Witt de la forme de Killing. Canad. J. Math. 50 (1998), no. 6, 1323-1336. | MR | Zbl

[Mu] D. Mumford, Abelian varieties. Tata Inst. of Fund. Res. Studies in Math., Oxford University Press, Oxford, 1970. | MR | Zbl

[O] M. Ojanguren, A splitting theorem for quadratic forms. Comment. Math. Helv. 57 (1982), no. 1, 145-157. | MR | Zbl

[O-P-S] M. Ojanguren, R. Parimala, R. Sridharan, Ketu and the second invariant of a quadratic space. K-Theory 7 (1993), no. 6, 501-515. | MR | Zbl

[Pa] R. Parimala, Study of quadratic forms-some connections with geometry. Proc. of the Int. Cong. of Mathematicians, Vol. 1, 2 (Zürich, 1994), 324-332, Birkhäuser, Basel, 1995. | MR | Zbl

[Pa-S] R. Parimala, V. Srinivas, Analogues of the Brauer group for algebras with involution. Duke Math. J. 66 (1992), no. 2, 207-237. | MR | Zbl

[Pat] R.R. Patterson, The Hasse invariant of a vector bundle. Trans. Amer. Math. Soc. 150 (1970), 425-443. | MR | Zbl

[Sa] T. Saito, Note on Stiefel-Whitney class of -adic cohomology. Preprint, University of Tokyo, 1998.

[SGA4] Théorie des topos et cohomologie étale des schémas. Séminaire de Géométrie Algébrique du Bois-Marie 1963- 1964 (SGA 4). Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat. Lecture Notes in Math., 269,270, 305. Springer-Verlag, Berlin-New York, 1972- 73. | MR

[Seg] G. Segal, Classifying spaces and spectral sequences. Inst. Hautes Etudes Sci. Publ. Math. 34 (1968), 105-112. | Numdam | MR | Zbl

[S1] J.-P. Serre, L'invariant de Witt de la forme Tr(x2). Comment. Math. Helv. 59 (1984), no. 4, 651-676. | MR | Zbl

[S2] J.-P. Serre, Revêtements à ramification impaire et thêta-caractéristiques. C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 9, 547-552. | MR | Zbl

[St] N. Steenrod, The Topology of Fibre Bundles. Princeton Mathematical Series, vol. 1. Princeton University Press, Princeton, N. J., 1951. | MR | Zbl

[Sw] R.G. Swan, K-theory of quadric hypersurfaces. Ann. of Math. (2) 122 (1985), no. 1, 113-153. | MR | Zbl

[Sz] M. Szyjewski, An invariant of quadratic forms over schemes. Doc. Math. 1 (1996), No. 19, 449-478 (electronic). | MR | Zbl

[W] W. Waterhouse, Discriminants of étale algebras and related structures, J. reine angew. Math. 379 (1987), 209-220. | MR | Zbl