Cet article donne une classification des réseaux fortement parfaits en dimension . A similitude près il y a deux tels réseaux, et son réseau dual.
This paper classifies the strongly perfect lattices in dimension . There are up to similarity two such lattices, and its dual lattice.
@article{JTNB_2000__12_2_503_0, author = {Gabriele Nebe and Boris Venkov}, title = {The strongly perfect lattices of dimension $10$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {503--518}, publisher = {Universit\'e Bordeaux I}, volume = {12}, number = {2}, year = {2000}, zbl = {0997.11049}, mrnumber = {1823200}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_503_0/} }
TY - JOUR AU - Gabriele Nebe AU - Boris Venkov TI - The strongly perfect lattices of dimension $10$ JO - Journal de théorie des nombres de Bordeaux PY - 2000 SP - 503 EP - 518 VL - 12 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_503_0/ LA - en ID - JTNB_2000__12_2_503_0 ER -
Gabriele Nebe; Boris Venkov. The strongly perfect lattices of dimension $10$. Journal de théorie des nombres de Bordeaux, Tome 12 (2000) no. 2, pp. 503-518. https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_503_0/
[BaV] Modular forms, lattices and spherical designs. In [EM]. | Zbl
, ,[Cas] Rational quadratic forms. Academic Press (1978). | MR | Zbl
,[CoS] Sphere Packings, Lattices and Groups. 3rd edition, Springer-Verlag (1998). | Zbl
, ,[CoS] On Lattices Equivalent to Their Duals. J. Number Theory 48 (1994), 373-382. | MR | Zbl
, ,[EM] Réseaux euclidiens, designs sphériques et groupes. Edited by J. Martinet. Enseignement des Mathématiques, monographie 37, to appear. | MR | Zbl
[MAG] The Magma Computational Algebra System for Algebra, Number Theory and Geometry. available via the magma home page http://wvw. maths. usyd. edu. au:8000/u/magma/.
[Mar] Les Réseaux parfaits des espaces Euclidiens. Masson (1996). | MR | Zbl
,[Marl] Sur certains designs sphériques liés à des réseaux entiers. In [EM].
,[MiH] Symmetric bilinear forms. Springer-Verlag (1973). | MR | Zbl
, ,[Scha] Quadratic and Hermitian Forms. Springer Grundlehren 270 (1985). | MR | Zbl
,[Sou] Irreducible finite integral matrix groups of degree 8 and 10. Math. Comp. 61 207 (1994), 335-350. | MR | Zbl
,[Ven] Réseaux et designs sphériques. Notes taken by J. Martinet of lectures by B. Venkov at Bordeaux (1996/1997). In [EM].
,