In this paper we introduce multiplicative lattices in
Nous introduisons ici des réseaux multiplicatifs de
@article{JTNB_2000__12_2_437_0, author = {Ulrich Halbritter and Michael E. Pohst}, title = {On lattice bases with special properties}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {437--453}, publisher = {Universit\'e Bordeaux I}, volume = {12}, number = {2}, year = {2000}, zbl = {0972.11060}, mrnumber = {1823195}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_437_0/} }
TY - JOUR AU - Ulrich Halbritter AU - Michael E. Pohst TI - On lattice bases with special properties JO - Journal de théorie des nombres de Bordeaux PY - 2000 SP - 437 EP - 453 VL - 12 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_437_0/ LA - en ID - JTNB_2000__12_2_437_0 ER -
Ulrich Halbritter; Michael E. Pohst. On lattice bases with special properties. Journal de théorie des nombres de Bordeaux, Tome 12 (2000) no. 2, pp. 437-453. https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_437_0/
[1] KANT V4. J. Symb. Comp. 24 (1997), 267-283. | MR | Zbl
Et Al.,[2] The Maple handbook: Maple V release 3. Springer Verlag, New York (1994). | Zbl
,[3] On an effective determination of a Shintani's decomposition of the cone Rn+. J. Math. Kyoto Univ. 33-4 (1993), 1057-1070. | MR | Zbl
,[4] An elementary proof for a theorem of Thomas and Vasquez. J. Number Th. 55 (1995), 197-208. | MR | Zbl
,[5] Algorithmic Algebraic Number Theory. Cambridge University Press 1989. | MR | Zbl
, ,[6] Über die Relativklassenzahl gewisser relativ-quadratischer Zahlkörper. Abh. Math. Sem. Univ. Hamburg 1 (1922), 27-48. | JFM
,[7] On evaluation of zeta functions of totally real algebraic number fields at non-positive integers. J. Fac. Sci. Univ. Tokyo IA 23 (1976),393-417. | MR | Zbl
,