Le but de cet article est d’expliquer comment calculer exactement le nombre de classes d’isomorphismes d’extensions abéliennes de
This paper explains how to compute exactly the number of isomorphism classes of abelian extensions of
@article{JTNB_2000__12_2_379_0, author = {Henri Cohen}, title = {Comptage exact de discriminants d'extensions ab\'eliennes}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {379--397}, publisher = {Universit\'e Bordeaux I}, volume = {12}, number = {2}, year = {2000}, zbl = {0976.11055}, mrnumber = {1823191}, language = {fr}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_379_0/} }
TY - JOUR AU - Henri Cohen TI - Comptage exact de discriminants d'extensions abéliennes JO - Journal de théorie des nombres de Bordeaux PY - 2000 SP - 379 EP - 397 VL - 12 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_379_0/ LA - fr ID - JTNB_2000__12_2_379_0 ER -
Henri Cohen. Comptage exact de discriminants d'extensions abéliennes. Journal de théorie des nombres de Bordeaux, Tome 12 (2000) no. 2, pp. 379-397. https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_379_0/
[1] A course in computational algebraic number theory (third printing). Graduate Texts in Math. 138, Springer-Verlag (1996). | MR | Zbl
,[2] Advanced topics in computational number theory. Graduate Texts in Math 193, Springer-Verlag (2000). | MR | Zbl
,[3] Densité des discriminants des extensions cycliques de degré premier, C.R. Acad. Sci. Paris 330 (2000), 61-66. | MR | Zbl
, , ,[4] Counting discriminants of number fields of degree up to four. proceedings ANTS IV Leiden (2000), Lecture Notes in Comp. Sci. 1838, Springer-Verlag, 269-283. | MR | Zbl
, , ,[5] Counting discriminants of number fields. MSRI preprint 2000-026 (2000), 9p.
, , ,[6] Asymptotic and exact enumemtion of discriminants of number fields. En préparation.
, , ,[7] Enumerating quartic dihedral extensions of Q. Submitted.
, , ,[8] On the density of discriminants of cyclic extensions of prime degree. En préparation.
, , ,[9] On the density of discriminants of quartic number fields. En préparation.
, , ,[10] Explicit estimates for summatory functions linked to the Möbius μ- function. Preprint (1996), soumis.
, , ,[11] Computing the summation of the Möbius function. Exp. Math. 5 (1996), 291-295. | EuDML | MR | Zbl
, ,[12] Introduction à la théorie analytique et probabiliste des nombres. Cours Spécialisé S.M.F. 1, Paris (1996). | MR | Zbl
,