In this paper we consider the extremal even self-dual -additive codes. We give a complete classification for length . Under the hypothesis that at least two minimal words have the same support, we classify the codes of length and we show that in length such a code is equivalent to the unique -hermitian code with parameters [18,9,8]. We construct with the help of them some extremal -modular lattices.
Dans cet article nous considérons les codes -additifs autoduaux pairs et extrémaux. Nous en donnons une classification complète en longueur . Avec l’hypothèse qu’au moins deux mots de poids minimal ont le même support, nous classifions les codes de longueur , et montrons en longueur qu’un tel code est équivalent à l’unique code -linéaire hermitien autodual de paramètres [18,9,8].
@article{JTNB_2000__12_2_255_0,
author = {Christine Bachoc and Philippe Gaborit},
title = {On extremal additive $\mathbb {F}_4$ codes of length $10$ to $18$},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {255--271},
year = {2000},
publisher = {Universit\'e Bordeaux I},
volume = {12},
number = {2},
zbl = {1007.94027},
mrnumber = {1823184},
language = {en},
url = {https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_255_0/}
}
TY - JOUR
AU - Christine Bachoc
AU - Philippe Gaborit
TI - On extremal additive $\mathbb {F}_4$ codes of length $10$ to $18$
JO - Journal de théorie des nombres de Bordeaux
PY - 2000
SP - 255
EP - 271
VL - 12
IS - 2
PB - Université Bordeaux I
UR - https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_255_0/
LA - en
ID - JTNB_2000__12_2_255_0
ER -
%0 Journal Article
%A Christine Bachoc
%A Philippe Gaborit
%T On extremal additive $\mathbb {F}_4$ codes of length $10$ to $18$
%J Journal de théorie des nombres de Bordeaux
%D 2000
%P 255-271
%V 12
%N 2
%I Université Bordeaux I
%U https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_255_0/
%G en
%F JTNB_2000__12_2_255_0
Christine Bachoc; Philippe Gaborit. On extremal additive $\mathbb {F}_4$ codes of length $10$ to $18$. Journal de théorie des nombres de Bordeaux, Tome 12 (2000) no. 2, pp. 255-271. https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_255_0/
[1] , Harmonic weight enumemtors of nonbinary codes and Mac Williams identities. Preprint (1999).
[2] , Every equidistant linear code is a sequence of dual hamming codes. Ars Comb. 18 (1983), 181-186. | Zbl | MR
[3] , , Handbook of Magma functions. Sydney (1995).
[4] , , , , Quantum error correction via codes over GF(4). IEEE Trans. Inform. Theory IT-44 (1998), 1369-1387. | Zbl | MR
[5] , , Sphere packings, Lattices and Groups. Springer-Verlag (1988). | Zbl | MR
[6] , , , , On the classification of extremal additive codes over GF(4). to appear in: Proceedings of the 37th Allerton Conference on Communication, Control, and Computing (1999), UIUC.
[7] , Self-dual codes over the Kleinian four group. Preprint (1996). | MR
[8] , On extremal self-dual quaternary codes of lengths 18 to 28. IEEE Trans. Inform. Theory 36 (1990), 651-660. | Zbl | MR
[9] , , , , Self-Dual Codes over GF(4). J. Comb. Theory 25 (1978), 288-318. | Zbl | MR
[10] , Finite subgroups of GL(24, Q). Exp. Math. 5 (1996), 2341-2397. | Zbl | MR
[11] , Modular Lattices in Euclidean Spaces. J. Number Theory 54 (1995), 190-202. | Zbl | MR
[12] , , Self-dual codes. In: Handbook of Coding Theory, ed. V. S. Pless and W. C. Huffman. Amsterdam: Elsevier, 1998, pp. 177-294. | Zbl | MR
[13] , , Extremal Lattices, Algorithmic Algebra and Number Theory (Heidelberg 1997), 139-170, Springer, Berlin, 1999. | Zbl | MR