Dans cet article nous considérons les codes -additifs autoduaux pairs et extrémaux. Nous en donnons une classification complète en longueur . Avec l’hypothèse qu’au moins deux mots de poids minimal ont le même support, nous classifions les codes de longueur , et montrons en longueur qu’un tel code est équivalent à l’unique code -linéaire hermitien autodual de paramètres [18,9,8].
In this paper we consider the extremal even self-dual -additive codes. We give a complete classification for length . Under the hypothesis that at least two minimal words have the same support, we classify the codes of length and we show that in length such a code is equivalent to the unique -hermitian code with parameters [18,9,8]. We construct with the help of them some extremal -modular lattices.
@article{JTNB_2000__12_2_255_0, author = {Christine Bachoc and Philippe Gaborit}, title = {On extremal additive $\mathbb {F}_4$ codes of length $10$ to $18$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {255--271}, publisher = {Universit\'e Bordeaux I}, volume = {12}, number = {2}, year = {2000}, zbl = {1007.94027}, mrnumber = {1823184}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_255_0/} }
TY - JOUR AU - Christine Bachoc AU - Philippe Gaborit TI - On extremal additive $\mathbb {F}_4$ codes of length $10$ to $18$ JO - Journal de théorie des nombres de Bordeaux PY - 2000 SP - 255 EP - 271 VL - 12 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_255_0/ LA - en ID - JTNB_2000__12_2_255_0 ER -
%0 Journal Article %A Christine Bachoc %A Philippe Gaborit %T On extremal additive $\mathbb {F}_4$ codes of length $10$ to $18$ %J Journal de théorie des nombres de Bordeaux %D 2000 %P 255-271 %V 12 %N 2 %I Université Bordeaux I %U https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_255_0/ %G en %F JTNB_2000__12_2_255_0
Christine Bachoc; Philippe Gaborit. On extremal additive $\mathbb {F}_4$ codes of length $10$ to $18$. Journal de théorie des nombres de Bordeaux, Tome 12 (2000) no. 2, pp. 255-271. https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_255_0/
[1] Harmonic weight enumemtors of nonbinary codes and Mac Williams identities. Preprint (1999).
,[2] Every equidistant linear code is a sequence of dual hamming codes. Ars Comb. 18 (1983), 181-186. | MR | Zbl
,[3] Handbook of Magma functions. Sydney (1995).
, ,[4] Quantum error correction via codes over GF(4). IEEE Trans. Inform. Theory IT-44 (1998), 1369-1387. | MR | Zbl
, , , ,[5] Sphere packings, Lattices and Groups. Springer-Verlag (1988). | MR | Zbl
, ,[6] On the classification of extremal additive codes over GF(4). to appear in: Proceedings of the 37th Allerton Conference on Communication, Control, and Computing (1999), UIUC.
, , , ,[7] Self-dual codes over the Kleinian four group. Preprint (1996). | MR
,[8] On extremal self-dual quaternary codes of lengths 18 to 28. IEEE Trans. Inform. Theory 36 (1990), 651-660. | MR | Zbl
,[9] Self-Dual Codes over GF(4). J. Comb. Theory 25 (1978), 288-318. | MR | Zbl
, , , ,[10] Finite subgroups of GL(24, Q). Exp. Math. 5 (1996), 2341-2397. | MR | Zbl
,[11] Modular Lattices in Euclidean Spaces. J. Number Theory 54 (1995), 190-202. | MR | Zbl
,[12] Self-dual codes. In: Handbook of Coding Theory, ed. V. S. Pless and W. C. Huffman. Amsterdam: Elsevier, 1998, pp. 177-294. | MR | Zbl
, ,[13] Extremal Lattices, Algorithmic Algebra and Number Theory (Heidelberg 1997), 139-170, Springer, Berlin, 1999. | MR | Zbl
, ,