On désigne par le nombre de partitions de l’entier en parts supérieures ou égales à . En appliquant la méthode du point selle à la série génératrice, nous donnons une estimation asymptotique de valable pour , et .
Let denote the number of partitions of into parts, each of which is at least . By applying the saddle point method to the generating series, an asymptotic estimate is given for , which holds for , and .
@article{JTNB_2000__12_1_227_0, author = {J.-L. Nicolas and A. S\'ark\"ozy}, title = {On partitions without small parts}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {227--254}, publisher = {Universit\'e Bordeaux I}, volume = {12}, number = {1}, year = {2000}, zbl = {1005.11049}, mrnumber = {1827850}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2000__12_1_227_0/} }
TY - JOUR AU - J.-L. Nicolas AU - A. Sárközy TI - On partitions without small parts JO - Journal de théorie des nombres de Bordeaux PY - 2000 SP - 227 EP - 254 VL - 12 IS - 1 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2000__12_1_227_0/ LA - en ID - JTNB_2000__12_1_227_0 ER -
J.-L. Nicolas; A. Sárközy. On partitions without small parts. Journal de théorie des nombres de Bordeaux, Tome 12 (2000) no. 1, pp. 227-254. https://jtnb.centre-mersenne.org/item/JTNB_2000__12_1_227_0/
[1] Partitions without small parts. Number theory, Vol. I (Budapest, 1987), 9-33, Colloq. Math. Soc. János Bolyai 51, North-Holland, Amsterdam, 1990. | MR | Zbl
, ,[2] Partitions sans petits sommants. A tribute to Paul Erdõs, 121-152, Cambridge Univ. Press, Cambridge, 1990. | MR | Zbl
, ,[3] Partitions into parts which are unequal and large. Number theory (Ulm, 1987), 19-30, Lecture Notes in Math., 1380, Springer, New York-Berlin, 1989. | MR | Zbl
, , ,[4] On the statistical theory of partitions. Topics in classical number theory, Vol. I, II (Budapest, 1981), 397-450, Colloq. Math. Soc. János Bolyai 34, North-Holland, Amsterdam-New York, 1984. | MR | Zbl
, ,[5] Partitions into distinct large parts. J. Australian Math. Soc. Ser. A 57 (1994), 386-416. | MR | Zbl
, ,[6] An asymptotic formula in the theory of partitions. Quart. J. Math. Oxford 2 (1951), 85-108. | MR | Zbl
,[7] Some asymptotic formulae in the theory of partitions II. Quart. J. Math. Oxford 4 (1953), 96-111. | MR | Zbl
,