We prove that a Sturmian bisequence, with slope and intercept , is fixed by some non-trivial substitution if and only if is a Sturm number and belongs to . We also detail a complementary system of integers connected with Beatty bisequences.
Les suites sturmiennes indexées sur , de pente et d’intercept , sont laissées fixes par une substitution non triviale si et seulement si est un nombre de Sturm et appartient à . On remarque aussi que les suites de Beatty permettent de définir des partitions de l’ensemble des entiers relatifs.
@article{JTNB_1999__11_1_201_0,
author = {Bruno Parvaix},
title = {Substitution invariant sturmian bisequences},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {201--210},
year = {1999},
publisher = {Universit\'e Bordeaux I},
volume = {11},
number = {1},
zbl = {0978.11005},
mrnumber = {1730440},
language = {en},
url = {https://jtnb.centre-mersenne.org/item/JTNB_1999__11_1_201_0/}
}
TY - JOUR AU - Bruno Parvaix TI - Substitution invariant sturmian bisequences JO - Journal de théorie des nombres de Bordeaux PY - 1999 SP - 201 EP - 210 VL - 11 IS - 1 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1999__11_1_201_0/ LA - en ID - JTNB_1999__11_1_201_0 ER -
Bruno Parvaix. Substitution invariant sturmian bisequences. Journal de théorie des nombres de Bordeaux, Tome 11 (1999) no. 1, pp. 201-210. https://jtnb.centre-mersenne.org/item/JTNB_1999__11_1_201_0/
[1] , On the sequence [nα], Math. Scand. 5 (1957), 69-76. | Zbl
[2] , Problem 3173, Amer. Math. Monthly 33 (1926) 159. Solutions, ibid., 34 (1927) 159. | JFM
[3] , Recent results on Sturmian words, in: J. Dassow (Ed.), Proc. DLT'95, World Scientific, Singapore (1996). | Zbl | MR
[4] and , A characterization of Sturmian morphisms, Lect. Notes Comp. Sci. 711 (1993), 281-290. | Zbl | MR
[5] et , Morphismes de Sturm, Bull. Belg. Math. Soc. 1 (1994), 175-189. | Zbl | MR
[6] and , On the generating function of the integer part [nα + γ], J. Number Theory 43 (1993), 293-318. | Zbl
[7] , Approximation of [nα + s and the zero of {nα + s}, J. Number Theory 50 (1995), 128-144. | Zbl
[8] , Descriptions of the characteristic sequence of an irrational, Canad. Math. Bull. 36 (1993), 15-21. | Zbl | MR
[9] , Some properties of Beatty sequences I, Canad. Math. Bull. 2 (1959), 190-197. | Zbl | MR
[10] , Some properties of Beatty sequences II, Canad. Math. Bull. 3 (1960), 17-22. | Zbl | MR
[11] and , Sequences with minimal block growth, Math. Systems Theory 7 (1973), 138-153. | Zbl | MR
[12] , , and , Substitution invariant cutting sequences, J. Théorie des Nombres de Bordeaux 5 (1993), 123-137. | Zbl | MR | Numdam
[13] , Complementary systems of integers, Amer. Math. Monthly 84 (1977), 114-115. | Zbl | MR
[14] , and , Characterization of the set of values f(n) = [nα], Discrete Math. 2 (1972), 335-345. | Zbl
[15] , and , Determination of nθby its sequence of differences, Canad. Math. Bull. 21 (1978), 441-446. | Zbl
[16] and , Gap problems for integer part and fractional part sequences, J. Number Theory 50 (1995), 66-86. | Zbl | MR
[17] , Covering the positive integers by disjoint sets of the form {nα + β]: n = 1, 2, ... }, J. Comb. Theor. Ser. A 15 (1973), 354-358. | Zbl
[18] , On a dynamical system related to sequences nx + y - L(n - 1)x + y], Dynamical Systems and Related Topics, Nagoya (1990), 192-197. | MR
[19] and , On continued fractions, substitutions and characteristic sequences, Japan. J. Math. 16 (1990), 287-306. | Zbl | MR
[20] , On the characteristic word of the inhomogeneous Beatty sequence, Bull. Aust. Math. Soc. 51 (1995), 337-351. | Zbl | MR
[21] , The fractional part of nθ + ϕ and Beatty sequences, J. Théorie des Nombres de Bordeaux 7 (1995), 387-406. | Zbl | Numdam
[22] , A certain power series associated with a Beatty sequence, Acta Arith. LXXVI (1996),109-129. | Zbl | MR
[23] and , Substitution invariant Beatty sequences, Japan. J. Math. 22 (1996), 349-354. | Zbl | MR
[24] et , Morphismes sturmiens et règles de Rauzy, J. Théorie des Nombres de Bordeaux 5 (1993), 221-233. | Zbl | MR | Numdam
[25] and , Symbolic Dynamics, Amer. J. Math. 60 (1938), 815-866. | Zbl | MR | JFM
[26] and , Symbolic Dynamics II. Sturmian trajectories, Amer. J. Math. 62 (1940), 1-42. | Zbl | MR | JFM
[27] , Propriétés d'invariance des mots sturmiens, J. Théorie des Nombres de Bordeaux 9 (1997), 351-369. | Zbl | MR | Numdam
[28] , The sequence of greatest integers of an arithmetic progression, J. Lond. Math. Soc. 17 (1978), 213-218. | Zbl | MR
[29] , Beatty sequences, continued fractions and certain shift operators, Canad. Math. Bull. 19 (1976), 473-482. | Zbl | MR
[30] , On disjoint pairs of Sturmian bisequences, Mathematical Institute, Leiden University, Report W96-02 (1996).
[31] , On complementary triples of Sturmian bisequences, Indag. Math. 7 (1996), 419-424. | Zbl | MR