Les suites sturmiennes indexées sur , de pente et d’intercept , sont laissées fixes par une substitution non triviale si et seulement si est un nombre de Sturm et appartient à . On remarque aussi que les suites de Beatty permettent de définir des partitions de l’ensemble des entiers relatifs.
We prove that a Sturmian bisequence, with slope and intercept , is fixed by some non-trivial substitution if and only if is a Sturm number and belongs to . We also detail a complementary system of integers connected with Beatty bisequences.
@article{JTNB_1999__11_1_201_0, author = {Bruno Parvaix}, title = {Substitution invariant sturmian bisequences}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {201--210}, publisher = {Universit\'e Bordeaux I}, volume = {11}, number = {1}, year = {1999}, zbl = {0978.11005}, mrnumber = {1730440}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_1999__11_1_201_0/} }
TY - JOUR AU - Bruno Parvaix TI - Substitution invariant sturmian bisequences JO - Journal de théorie des nombres de Bordeaux PY - 1999 SP - 201 EP - 210 VL - 11 IS - 1 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1999__11_1_201_0/ LA - en ID - JTNB_1999__11_1_201_0 ER -
Bruno Parvaix. Substitution invariant sturmian bisequences. Journal de théorie des nombres de Bordeaux, Tome 11 (1999) no. 1, pp. 201-210. https://jtnb.centre-mersenne.org/item/JTNB_1999__11_1_201_0/
[1] On the sequence [nα], Math. Scand. 5 (1957), 69-76. | Zbl
,[2] Problem 3173, Amer. Math. Monthly 33 (1926) 159. Solutions, ibid., 34 (1927) 159. | JFM
,[3] Recent results on Sturmian words, in: J. Dassow (Ed.), Proc. DLT'95, World Scientific, Singapore (1996). | MR | Zbl
,[4] A characterization of Sturmian morphisms, Lect. Notes Comp. Sci. 711 (1993), 281-290. | MR | Zbl
and ,[5] Morphismes de Sturm, Bull. Belg. Math. Soc. 1 (1994), 175-189. | MR | Zbl
et ,[6] On the generating function of the integer part [nα + γ], J. Number Theory 43 (1993), 293-318. | Zbl
and ,[7] Approximation of [nα + s and the zero of {nα + s}, J. Number Theory 50 (1995), 128-144. | Zbl
,[8] Descriptions of the characteristic sequence of an irrational, Canad. Math. Bull. 36 (1993), 15-21. | MR | Zbl
,[9] Some properties of Beatty sequences I, Canad. Math. Bull. 2 (1959), 190-197. | MR | Zbl
,[10] Some properties of Beatty sequences II, Canad. Math. Bull. 3 (1960), 17-22. | MR | Zbl
,[11] Sequences with minimal block growth, Math. Systems Theory 7 (1973), 138-153. | MR | Zbl
and ,[12] Substitution invariant cutting sequences, J. Théorie des Nombres de Bordeaux 5 (1993), 123-137. | Numdam | MR | Zbl
, , and ,[13] Complementary systems of integers, Amer. Math. Monthly 84 (1977), 114-115. | MR | Zbl
,[14] Characterization of the set of values f(n) = [nα], Discrete Math. 2 (1972), 335-345. | Zbl
, and ,[15] Determination of nθby its sequence of differences, Canad. Math. Bull. 21 (1978), 441-446. | Zbl
, and ,[16] Gap problems for integer part and fractional part sequences, J. Number Theory 50 (1995), 66-86. | MR | Zbl
and ,[17] Covering the positive integers by disjoint sets of the form {nα + β]: n = 1, 2, ... }, J. Comb. Theor. Ser. A 15 (1973), 354-358. | Zbl
,[18] On a dynamical system related to sequences nx + y - L(n - 1)x + y], Dynamical Systems and Related Topics, Nagoya (1990), 192-197. | MR
,[19] On continued fractions, substitutions and characteristic sequences, Japan. J. Math. 16 (1990), 287-306. | MR | Zbl
and ,[20] On the characteristic word of the inhomogeneous Beatty sequence, Bull. Aust. Math. Soc. 51 (1995), 337-351. | MR | Zbl
,[21] The fractional part of nθ + ϕ and Beatty sequences, J. Théorie des Nombres de Bordeaux 7 (1995), 387-406. | Numdam | Zbl
,[22] A certain power series associated with a Beatty sequence, Acta Arith. LXXVI (1996),109-129. | MR | Zbl
,[23] Substitution invariant Beatty sequences, Japan. J. Math. 22 (1996), 349-354. | MR | Zbl
and ,[24] Morphismes sturmiens et règles de Rauzy, J. Théorie des Nombres de Bordeaux 5 (1993), 221-233. | Numdam | MR | Zbl
et ,[25] Symbolic Dynamics, Amer. J. Math. 60 (1938), 815-866. | JFM | MR | Zbl
and ,[26] Symbolic Dynamics II. Sturmian trajectories, Amer. J. Math. 62 (1940), 1-42. | JFM | MR | Zbl
and ,[27] Propriétés d'invariance des mots sturmiens, J. Théorie des Nombres de Bordeaux 9 (1997), 351-369. | Numdam | MR | Zbl
,[28] The sequence of greatest integers of an arithmetic progression, J. Lond. Math. Soc. 17 (1978), 213-218. | MR | Zbl
,[29] Beatty sequences, continued fractions and certain shift operators, Canad. Math. Bull. 19 (1976), 473-482. | MR | Zbl
,[30] On disjoint pairs of Sturmian bisequences, Mathematical Institute, Leiden University, Report W96-02 (1996).
,[31] On complementary triples of Sturmian bisequences, Indag. Math. 7 (1996), 419-424. | MR | Zbl
,