Under the Generalized Riemann Hypothesis, it is proved that for any there is depending on only such that every even integer is a sum of two odd primes and powers of .
On démontre que sous GRH et pour , tout entier pair assez grand est somme de deux nombres premiers impairs et de puissances de .
@article{JTNB_1999__11_1_133_0,
author = {Jianya Liu and Ming-Chit Liu and Tianze Wang},
title = {On the almost {Goldbach} problem of {Linnik}},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {133--147},
year = {1999},
publisher = {Universit\'e Bordeaux I},
volume = {11},
number = {1},
zbl = {0979.11051},
mrnumber = {1730436},
language = {en},
url = {https://jtnb.centre-mersenne.org/item/JTNB_1999__11_1_133_0/}
}
TY - JOUR AU - Jianya Liu AU - Ming-Chit Liu AU - Tianze Wang TI - On the almost Goldbach problem of Linnik JO - Journal de théorie des nombres de Bordeaux PY - 1999 SP - 133 EP - 147 VL - 11 IS - 1 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1999__11_1_133_0/ LA - en ID - JTNB_1999__11_1_133_0 ER -
%0 Journal Article %A Jianya Liu %A Ming-Chit Liu %A Tianze Wang %T On the almost Goldbach problem of Linnik %J Journal de théorie des nombres de Bordeaux %D 1999 %P 133-147 %V 11 %N 1 %I Université Bordeaux I %U https://jtnb.centre-mersenne.org/item/JTNB_1999__11_1_133_0/ %G en %F JTNB_1999__11_1_133_0
Jianya Liu; Ming-Chit Liu; Tianze Wang. On the almost Goldbach problem of Linnik. Journal de théorie des nombres de Bordeaux, Tome 11 (1999) no. 1, pp. 133-147. https://jtnb.centre-mersenne.org/item/JTNB_1999__11_1_133_0/
[C] , On Goldbach's problem and the sieve methods. Sci. Sin., 21 (1978), 701-739. | Zbl | MR
[D] , Multiplicative Number Theory. 2nd ed., Springer, 1980. | Zbl | MR
[G] , Primes and powers of 2. Invent. Math. 29(1975), 125-142. | Zbl | MR
[HL] and , Some problems of "patitio numerorum" V: A further contribution to the study of Goldbach's problem. Proc. London Math. Soc. (2) 22 (1923), 45-56. | JFM
[HR] and , Sieve Methods, Academic Press, 1974. | Zbl | MR
[KPP] , and , A note on the exceptional set for Goldbach's problem in short intervals. Mh. Math. 116 (1993), 275-282; corrigendum 119 (1995), 215-216.
[L1] , Prime numbers and powers of two. Trudy Mat. Inst. Steklov 38 (1951), 151-169. | Zbl | MR
[L2] , Addition of prime numbers and powers of one and the same number. Mat. Sb.(N. S.) 32 (1953), 3-60. | Zbl | MR
[LLW1] , , and , The number of powers of 2 in a representation of large even integers (I). Sci. China Ser. A 41 (1998), 386-398. | Zbl | MR
[LLW2] , , and , The number of powers of 2 in a representation of large even integers (II). Sci. China Ser. A. 41 (1998), 1255-1271. | Zbl | MR
[LP] and , A pair correlation hypothesis and the exceptional set in Goldbach's problem. Mathematika 43 (1996), 349-361. | Zbl | MR
[P] , Primzahlverteilung. Springer, 1957. | Zbl | MR
[R] , Über einige Sätze der additiven Zahlentheorie. Math. Ann. 109 (1934), 668-678. | Zbl | MR | JFM
[RS] and , Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962), 64-94. | Zbl | MR
[Vi] , On an "almost binary" problem. Izv. Akad. Nauk. SSSR Ser. Mat. 20 (1956), 713-750. | Zbl | MR