This article describes a computer algorithm which exhibits a sufficient condition for a number field to be euclidean for the norm. In the survey [3] p 405, Franz Lemmermeyer pointed out that 743 number fields where known (march 1994) to be euclidean (the first one,
Cet article donne la description d’un algorithme informatique fournissant une condition suffisante pour qu’un corps de nombres soit euclidien pour la norme, ou plus brièvement euclidien. Dans le recensement des corps euclidiens et des méthodes de recherche de ceux-ci, Franz Lemmermeyer a mentionné, [3] p 405, que 743 corps de nombres euclidiens étaient connus (mars 1994), (le premier d’entre eux,
@article{JTNB_1998__10_1_33_0, author = {Roland Qu\^eme}, title = {A computer algorithm for finding new euclidean number fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {33--48}, publisher = {Universit\'e Bordeaux I}, volume = {10}, number = {1}, year = {1998}, zbl = {0913.11056}, mrnumber = {1827284}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_1998__10_1_33_0/} }
TY - JOUR AU - Roland Quême TI - A computer algorithm for finding new euclidean number fields JO - Journal de théorie des nombres de Bordeaux PY - 1998 SP - 33 EP - 48 VL - 10 IS - 1 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1998__10_1_33_0/ LA - en ID - JTNB_1998__10_1_33_0 ER -
Roland Quême. A computer algorithm for finding new euclidean number fields. Journal de théorie des nombres de Bordeaux, Tome 10 (1998) no. 1, pp. 33-48. https://jtnb.centre-mersenne.org/item/JTNB_1998__10_1_33_0/
[1] The euclidean algorithm in cubic number fields, draft (August 1996).
and ,[2] Linear forms associated with an algebraic number field, Quarterly J. Math., (2) 3, (1952), pp. 32-41. | MR | Zbl
,[3] The euclidean algorithm in algebraic number fields, Expo. Mat., no 13 (1995), pp. 385-416. | MR | Zbl
,[4] Euclidean number fields of large degree, Invent. Math., n0 38, (1977), pp. 237-254. | MR | Zbl
,[5] On the finite generation of linear groups over Hasse domains, J. Reine Angew. Math. n0 217 (1965), pp. 79-108. | MR | Zbl
,[6] Theorie algébrique des nombres, Hermann, (1967). | MR | Zbl
,