From complex multiplication we know that elliptic units are contained in certain ray class fields over a quadratic imaginary number field
En multiplication complexe, il est démontré que les unités elliptiques sont contenues dans certains corps de classes de rayon sur un corps quadratique imaginaire
@article{JTNB_1997__9_2_383_0, author = {Reinhard Schertz}, title = {Construction of {Ray} class fields by elliptic units}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {383--394}, publisher = {Universit\'e Bordeaux I}, volume = {9}, number = {2}, year = {1997}, zbl = {0902.11047}, mrnumber = {1617405}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_1997__9_2_383_0/} }
TY - JOUR AU - Reinhard Schertz TI - Construction of Ray class fields by elliptic units JO - Journal de théorie des nombres de Bordeaux PY - 1997 SP - 383 EP - 394 VL - 9 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1997__9_2_383_0/ LA - en ID - JTNB_1997__9_2_383_0 ER -
Reinhard Schertz. Construction of Ray class fields by elliptic units. Journal de théorie des nombres de Bordeaux, Tome 9 (1997) no. 2, pp. 383-394. https://jtnb.centre-mersenne.org/item/JTNB_1997__9_2_383_0/
[1] Modular Units, Grundlehren Math. Wiss., Vol. 244, Springer-Verlag, New-York/ Berlin, (1981). | MR | Zbl
, ,[2] Die Berechnung der Klassenzahl abelscher Körper über quadratischen Zahlkörpern, Akademie-Verlag, Berlin (1957). | MR | Zbl
,[3] Some Applications of Kronecker's limit formula, Ann. Math. 80 (1964), 104-148. | MR | Zbl
,[4] Galoismodulstruktur und elliptische Funktionen, Journal of Number Theory, Vol. 39, No. 3, (1991. | MR | Zbl
,[5] Problèmes de construction en multiplication complexe, Séminaire de Théorie des Nombres de Bordeaux 4 (1992), 239-262. | Numdam | MR | Zbl
,[6] Zur expliziten Berechnung von Ganzheitsbasen in Strahlklassenkörpern über einem imaginär-quadratischen Zahlkörper, Journal of Number Theory, Vol. 34, No. 1 (1990), 41-53. | MR | Zbl
,[7] L-functions at s = 1, IV, Advances in Math. 35 (1980), 197-235. | MR | Zbl
,