Classical results of Rédei, Reichardt and Scholz show that unramified cyclic quartic extensions of quadratic number fields correspond to certain factorizations of its discriminant disc . In this paper we extend their results to unramified quaternion extensions of which are normal over , and show how to construct them explicitly.
Des résultats classiques dûs à Rédei, Reichardt et Scholz montrent que les extensions cycliques non ramifiées de degré d’un corps de nombre quadratique correspondent à certaines factorisations du discriminant disc . Dans cet article, on généralise ces résultats aux extensions quaternionniennes non ramifiées et galoisiennes sur . On montre aussi comment les construire explicitement.
@article{JTNB_1997__9_1_51_0,
author = {Franz Lemmermeyer},
title = {Unramified quaternion extensions of quadratic number fields},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {51--68},
year = {1997},
publisher = {Universit\'e Bordeaux I},
volume = {9},
number = {1},
zbl = {0890.11031},
mrnumber = {1469661},
language = {en},
url = {https://jtnb.centre-mersenne.org/item/JTNB_1997__9_1_51_0/}
}
TY - JOUR AU - Franz Lemmermeyer TI - Unramified quaternion extensions of quadratic number fields JO - Journal de théorie des nombres de Bordeaux PY - 1997 SP - 51 EP - 68 VL - 9 IS - 1 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1997__9_1_51_0/ LA - en ID - JTNB_1997__9_1_51_0 ER -
Franz Lemmermeyer. Unramified quaternion extensions of quadratic number fields. Journal de théorie des nombres de Bordeaux, Tome 9 (1997) no. 1, pp. 51-68. https://jtnb.centre-mersenne.org/item/JTNB_1997__9_1_51_0/
[1] , , Sur les extensions de groupe de Galois Ã4, Acta Arith. 62 (1992), 1-10. | Zbl | MR
[2] , , Parité du nombre de classes des S4extensions de Q et courbes elliptiques, J. Number Theory 57 (1996), 366-384 | Zbl | MR
[3] , A Classical Invitation to Algebraic Numbers and Class Fields, Springer Verlag 1978. | MR
[4] , Quaternion compositum genus, J. Number Theory 11 (1979), 399-411 | Zbl | MR
[5] , , Plongement d'une extension quadratique dans une extension quaternionienne, J. Reine Angew. Math. 262/263 (1973), 323-338. | Zbl | MR
[6] , Konstruktion von Quaternionenkörpern, Ges. Werke II, Nachlaß, Braunschweig 1931, 376-384.
[7] , Galois Module Structure of Algebraic Integers, Ergebnisse der Mathematik, Springer Verlag Heidelberg, 1983 | Zbl | MR
[8] , An elementary construction of Galois quaternionic extensions, Proc. Japan Acad. 66 (1990), 80-83. | Zbl | MR
[9] , Über das Verhalten der Ideale des Grundkörpers im Klassenkörper, Monatsh. Math. Phys. 27 (1916), 1-15. | MR | JFM
[10] , , , Groups of order 16 as Galois groups, Expo. Math. 13 (1995), 289-319. | Zbl | MR
[11] , , The groups of order 2n (n ≤ 6), Macmillan, New York 1964. | Zbl
[12] , Quadratischer Restcharakter von Grundeinheiten und 2-Klassengruppen quadratischer Zahlkörper, Diss. Univ. Münster, 1981
[13] , On central extensions of elementary abelian fields, J. Number Theory 36 (1990), 95-107. | Zbl | MR
[14] , Sur les extensions de Q à groupe de Galois S4 et S4, Acta Arith. 70 (1995), 259-276. | Zbl | MR
[15] , , Quaternion extensions, Algebraic Geometry and Commutative Algebra (1987), 155-182. | Zbl | MR
[16] , Explicit classifications of some 2-extensions of a field of characteristic different from 2, Can. J. Math. 42 (1990), 825-855. | Zbl | MR
[17] , Number fields with class number congruent to 4 mod 8 and Hilbert's Theorem 94, J. Number Theory 8 (1976), 271-279. | Zbl | MR
[18] , Über den 2-Klassenkörperturm eines quadratischen Zahlkörpers, J. Reine Angew. Math. 214/215 (1963), 201-206 | Zbl | MR
[19] , Algebra, third edition, Addison-Wesley 1993. | Zbl
[20] , On 2-groups as Galois groups, Canad. J. Math. 47 (1995), no. 6, 1253-1273. | Zbl | MR
[21] , Die Konstruktion von Klassenkörpern, Diss. Univ. Heidelberg 1995. | Zbl
[22] , Class Field Towers, monograph, in preparation.
[23] , Calcul des nombres de classes relatifs: application aux corps quaternioniques a multiplication complexe, C. R. Acad. Sci. Paris 317 (1993), 643-646. | Zbl | MR
[24] , Determination of all quaternion octic CM-fields with class number 2, J. London Math. Soc. (1996) | Zbl | MR
[25] , , Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one, Acta Arith. 67 (1994), 47-62. | Zbl | MR
[26] , , The class number one problem for some non-abelian normal CM-fields of 2-power degrees, preprint 1996 | MR
[27] , Sur les extensions à groupe de Galois quaternionien, C. R. Acad. Sci. Paris 274 (1972), 933-935. | Zbl | MR
[28] , H8, Algebraic Number Fields: L-functions and Galois Properties (A. Fröhlich, ed.), 525-538, Acadenic Press New York 1977 | Zbl | MR
[29] , , A characterization of C-fields via Galois groups, J. Algebra 137 (1991), 1-11 | Zbl | MR
[30] Arithmetischer Beweis des Satzes über die Anzahl der durch vier teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper, J. Reine Angew. Math. 171 (1934), 55-60 | Zbl
[31] , , Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math. 170 (1934), 69-74 | Zbl | JFM
[32] , Über Normalkörper mit Quaternionengruppe, Math. Z. 41 (1936), 218-222. | Zbl | MR | JFM
[33] , Die arithmetische Theorie und die Konstruktion der Quaternionenkörper auf klassenkörpertheoretischer Grundlage, Monatsh. Math. Phys. 41 (1934), 85-125. | MR | JFM
[34] , Extra-special groups of order 32 as Galois groups, Can. J. Math. 46 (1994), 886-896 | Zbl | MR
[35] , , Group Tables, Shiva Publishing Ltd, Kent, UK 1980 | Zbl | MR
[36] , Constructing quaternionic fields, Glasgow Math. J. 34 (1992), 43-54. | Zbl | MR
[37] , Konstruktion von galoisschen Körpern der Charakteristik p zu vorgegebener Gruppe der Ordnung pf, J. Reine Angew. Math. 174 (1936), 237-245. | Zbl | JFM