Let denote the minimum cardinality of a ternary code of length and covering radius one. In a previous paper, we improved on the lower bound by showing that . In this note, we prove that .
Notons le cardinal minimal d’un code ternaire de longueur et de rayon de recouvrement un. Dans un précédent article, nous avons amélioré la minoration en montrant que . Dans cette note, nous prouvons que .
@article{JTNB_1996__8_2_481_0,
author = {Laurent Habsieger},
title = {A new lower bound for the football pool problem for $7$ matches},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {481--484},
year = {1996},
publisher = {Universit\'e Bordeaux I},
volume = {8},
number = {2},
zbl = {0866.94027},
mrnumber = {1438484},
language = {en},
url = {https://jtnb.centre-mersenne.org/item/JTNB_1996__8_2_481_0/}
}
TY - JOUR AU - Laurent Habsieger TI - A new lower bound for the football pool problem for $7$ matches JO - Journal de théorie des nombres de Bordeaux PY - 1996 SP - 481 EP - 484 VL - 8 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1996__8_2_481_0/ LA - en ID - JTNB_1996__8_2_481_0 ER -
Laurent Habsieger. A new lower bound for the football pool problem for $7$ matches. Journal de théorie des nombres de Bordeaux, Tome 8 (1996) no. 2, pp. 481-484. https://jtnb.centre-mersenne.org/item/JTNB_1996__8_2_481_0/
[1] , Lower bounds for q-ary covering codes, IEEE Trans. Inform. Theory 36 (1990), 664-671. | Zbl | MR
[2] , , and , Covering radius 1985-1994, preprint.
[3] , Lower bounds for q-ary coverings by spheres of radius one, J. Combin. Theory Ser. A 67 (1994), 199-222. | Zbl | MR
[4] , Binary codes with covering radius one: some new lower bounds, Discrete Mathematics, to appear. | Zbl | MR