The density of primes dividing at least one term of the Lucas sequence
On donne la densité des nombres premiers qui divisent au moins un terme de la suite de Lucas
@article{JTNB_1996__8_2_449_0, author = {Pieter Moree}, title = {On the prime density of {Lucas} sequences}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {449--459}, publisher = {Universit\'e Bordeaux I}, volume = {8}, number = {2}, year = {1996}, zbl = {0873.11058}, mrnumber = {1438482}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_1996__8_2_449_0/} }
Pieter Moree. On the prime density of Lucas sequences. Journal de théorie des nombres de Bordeaux, Tome 8 (1996) no. 2, pp. 449-459. https://jtnb.centre-mersenne.org/item/JTNB_1996__8_2_449_0/
[1] Density of prime divisors of linear recurrences, Mem. of the Amer. Math. Soc. 551, 1995. | MR | Zbl
,[2] Arithmetische Theorie der Normalkörper von 2-Potenzgrad mit Diedergruppe, J. Number Theory 3 (1971), 412-443. | MR | Zbl
,[3] Uber die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl a ≠ 0 von gerader bzw., ungerader Ordnung mod. p ist, Math. Ann. 166 (1966), 19-23. | MR | Zbl
,[4] The set of primes dividing the Lucas numbers has density 2/3, Pacific J. Math. 118 (1985), 449-461 (Errata, Pacific J. Math. 162 (1994), 393-397). | MR | Zbl
,[5] Counting divisors of Lucas numbers, MPI-preprint, no. 34, Bonn, 1996. | MR
,[6] A conjecture of Krishnamurty on decimal periods and some allied problems, J. Number Theory 13 (1981), 303-319. | MR | Zbl
,[7] The book of prime number records, Springer-Verlag, Berlin etc., 1988. | MR | Zbl
,[8] Catalan's conjecture, Academic Press, Boston etc., 1994. | MR | Zbl
,[9] The number of real quadratic fields having units of negative norm, Experimental Mathematics 2 (1993), 121-136. | MR | Zbl
,[10] On the density of some sets of primes. IV, Acta Arith. 43 (1984), 177-190. | MR | Zbl
,