The density of primes dividing at least one term of the Lucas sequence , defined by and for , with an arbitrary integer, is determined.
On donne la densité des nombres premiers qui divisent au moins un terme de la suite de Lucas , définie par et pour , avec entier arbitraire.
@article{JTNB_1996__8_2_449_0,
author = {Pieter Moree},
title = {On the prime density of {Lucas} sequences},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {449--459},
year = {1996},
publisher = {Universit\'e Bordeaux I},
volume = {8},
number = {2},
zbl = {0873.11058},
mrnumber = {1438482},
language = {en},
url = {https://jtnb.centre-mersenne.org/item/JTNB_1996__8_2_449_0/}
}
Pieter Moree. On the prime density of Lucas sequences. Journal de théorie des nombres de Bordeaux, Tome 8 (1996) no. 2, pp. 449-459. https://jtnb.centre-mersenne.org/item/JTNB_1996__8_2_449_0/
[1] , Density of prime divisors of linear recurrences, Mem. of the Amer. Math. Soc. 551, 1995. | Zbl | MR
[2] , Arithmetische Theorie der Normalkörper von 2-Potenzgrad mit Diedergruppe, J. Number Theory 3 (1971), 412-443. | Zbl | MR
[3] , Uber die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl a ≠ 0 von gerader bzw., ungerader Ordnung mod. p ist, Math. Ann. 166 (1966), 19-23. | Zbl | MR
[4] , The set of primes dividing the Lucas numbers has density 2/3, Pacific J. Math. 118 (1985), 449-461 (Errata, Pacific J. Math. 162 (1994), 393-397). | Zbl | MR
[5] , Counting divisors of Lucas numbers, MPI-preprint, no. 34, Bonn, 1996. | MR
[6] , A conjecture of Krishnamurty on decimal periods and some allied problems, J. Number Theory 13 (1981), 303-319. | Zbl | MR
[7] , The book of prime number records, Springer-Verlag, Berlin etc., 1988. | Zbl | MR
[8] , Catalan's conjecture, Academic Press, Boston etc., 1994. | Zbl | MR
[9] , The number of real quadratic fields having units of negative norm, Experimental Mathematics 2 (1993), 121-136. | Zbl | MR
[10] , On the density of some sets of primes. IV, Acta Arith. 43 (1984), 177-190. | Zbl | MR