Dans cet article nous étudions la complexité de la description (i) de suites sur un alphabet fini et (ii) de sous-ensembles de l’ensemble N des entiers naturels. Soit une suite sur un alphabet fini . Nous définissons la -automaticité de s, notée , comme le plus petit nombre possible d’états d’un automate déterministe qui, pour tout tel que , prend l’expression de en base comme entrée et calcule . Nous donnons des exemples de suites qui ont une grande automaticité dans toutes les bases ; par exemple nous montrons que la -automaticité de la fonction caractéristique des nombres premiers satisfait pour tout , rendant ainsi quantitatif le théorème classique de Minsky et Papert suivant lequel l’ensemble des nombres premiers exprimés en base n’est pas régulier. Nous donnons des exemples de suites dont la -automaticité est petite dans toute base, ainsi que des exemples de suites dont la -automaticité est petite dans certaines bases et grande dans d’autres. Nous obtenons aussi des bornes pour l’automaticité de certaines suites qui sont des points fixes d’homomorphismes, par exemple les mots infinis de Fibonacci et de Thue-Morse. Enfin nous définissons un concept voisin, appelé diversité, et nous donnons des exemples de suites ayant une diversité élevée.
This paper studies the descriptional complexity of (i) sequences over a finite alphabet ; and (ii) subsets of (the natural numbers). If is a sequence over a finite alphabet , then we define the -automaticity of , to be the smallest possible number of states in any deterministic finite automaton that, for all with , takes expressed in base as input and computes . We give examples of sequences that have high automaticity in all bases ; for example, we show that the characteristic sequence of the primes has -automaticity for all , thus making quantitative the classical theorem of Minsky and Papert that the set of primes expressed in base is not regular. We give examples of sequences with low automaticity in all bases , and low automaticity in some bases and high in others. We also obtain bounds on the automaticity of certain sequences that are fixed points of homomorphisms, such as the Fibonacci and Thue-Morse infinite words. Finally, we define a related concept called diversity and give examples of sequences with high diversity.
@article{JTNB_1996__8_2_347_0, author = {Jeffrey Shallit}, title = {Automaticity {IV} : sequences, sets, and diversity}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {347--367}, publisher = {Universit\'e Bordeaux I}, volume = {8}, number = {2}, year = {1996}, zbl = {0876.11010}, mrnumber = {1438474}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_1996__8_2_347_0/} }
TY - JOUR AU - Jeffrey Shallit TI - Automaticity IV : sequences, sets, and diversity JO - Journal de théorie des nombres de Bordeaux PY - 1996 SP - 347 EP - 367 VL - 8 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1996__8_2_347_0/ LA - en ID - JTNB_1996__8_2_347_0 ER -
Jeffrey Shallit. Automaticity IV : sequences, sets, and diversity. Journal de théorie des nombres de Bordeaux, Tome 8 (1996) no. 2, pp. 347-367. https://jtnb.centre-mersenne.org/item/JTNB_1996__8_2_347_0/
[1] Jr. On a characterization of the nonregular set of primes. J. Comput. System Sci. 2 (1968), 464-467. | MR | Zbl
,[2] A relative of the Thue-Morse sequence. Discrete Math. 139 (1995), 455-461. | MR | Zbl
, , , , , , and[3] Recent results on Sturmian words. To appear, Proc. of DLT '95. Also available at http: //www-litp. ibp fr/berstel/Liaisons/magdeburg. ps . gz.
[4] An Introduction to Diophantine Approximation. Cambridge University Press,1957. | MR | Zbl
[5] Uniform tag sequences. Math. Systems Theory 6 (1972),164-192. | MR | Zbl
[6] Substitution invariant cutting sequences. J. Théorie Nombres Bordeaux 5 (1993),123-137. | Numdam | MR | Zbl
, , , and[7] On the power of 2-way probabilistic finite state automata. In Proc. 30th Ann. Symp. Found. Comput. Sci., pages 480-485. IEEE Press, 1989.
and[8] A time complexity gap for two-way probabilistic finite-state automata. SIAM J. Comput. 19 (1990), 1011-1023. | MR | Zbl
and[9] Automata, Languages, and Machines, Vol. A. Academic Press, 1974. | MR | Zbl
[10] Automaticity III: Polynomial automaticity and context-free languages. Submitted,1996.
and[11] An Introduction to the Theory of Numbers. Oxford University Press, 1989. | MR
and[12] On the recognition of primes by automata. J. Assoc. Comput. Mach. 15 (1968), 382-389. | MR | Zbl
and[13] The least square-free number in an arithmetic progression. J. Reine Angew. Math. 332 (1982), 204-220. | MR | Zbl
[14] Zero-free regions for Dirichlet L-functions and the least prime in an arithmetic progression. Proc. Lond. Math. Soc. 64 (1992), 265-338. | MR | Zbl
[15] Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979. | MR | Zbl
and[16] Minimal nontrivial space complexity of probabilistic one-way Turing machines. In B. Rovan, editor, MFCS '90 (Mathematical Foundations of Computer Science), Vol. 452 of Lecture Notes in Computer Science, pages 355-361. Springer-Verlag, 1990. | MR | Zbl
and[17] Running time to recognize nonregular languages by 2-way probabilistic automata. In J. Leach Albert, B. Monien, and M. Rodríguez Artalejo, editors, ICALP '91 (18th International Colloquium on Automata, Languages, and Programming), Vol. 510 of Lecture Notes in Computer Science, pages 174-185. Springer-Verlag, 1991. | MR | Zbl
and[18] The Art of Computer Programming, Vol. III: Sorting and Searching. Addison-Wesley, 1973. | MR | Zbl
[19] Unrecognizable sets of numbers. J. Assoc. Comput. Mach. 13 (1966), 281-286. | MR | Zbl
and[20] Automaticity II: Descriptional complexity in the unary case. To appear, Theoret. Comput. Sci. | MR | Zbl
, , and[21] Approximate formulas for some functions of prime numbers. Ill. J. Math. 6 (1962), 64-94. | MR | Zbl
and[22] Sharper bounds for the Chebyshev functions θ(x) and ψ(x). II. Math. Comp. 30 (1976), 337-360. Corrigenda in Math. Comp. 30 (1976), 900. | Zbl
[23] Some facts about continued fractions that should be better known. Technical Report CS-91-30, University of Waterloo, Department of Computer Science, July 1991.
[24] The fixed point of 1→ 121, 2 → 12221 is not 2-automatic. Unpublished manuscript, dated September 10, 1992.
[25] Real numbers with bounded partial quotients: a survey. Enseign. Math. 38 (1992),151-187. | MR | Zbl
[26] Automaticity: Properties of a measure of descriptional complexity. In P. Enjalbert, E. W. Mayr, and K. W. Wagner, editors, STACS 94: 11th Annual Symposium on Theoretical Aspects of Computer Science, Vol. 775 of Lecture Notes in Computer Science, pages 619-630. Springer-Verlag, 1994. | MR
and[27] Automaticity I: Properties of a measure of descriptional complexity. To appear, J. Comput. System Sci. | MR | Zbl
and[28] Gaps and steps for the sequence nθ mod 1. Proc. Cambridge Phil. Soc. 63 (1967), 1115-1123. | Zbl
[29] On the distribution mod 1 of the sequence nα. Ann. Univ. Sci. Budapest Eötvös Sect. Math. 1 (1958),127-134. | Zbl
[30] On successive settings of an arc on the circumference of a circle. Fundamenta Math. 46 (1958), 187-189. | MR | Zbl
[31] Jr. Greatest of the least primes in arithmetic progressions having a given modulus. Math. Comp. 33 (1979), 1073-1080. | MR | Zbl
,