Let
Soit
@article{JTNB_1996__8_2_251_0, author = {Paul M. Voutier}, title = {Primitive divisors of {Lucas} and {Lehmer} sequences, {II}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {251--274}, publisher = {Universit\'e Bordeaux I}, volume = {8}, number = {2}, year = {1996}, zbl = {0873.11013}, mrnumber = {1438469}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_1996__8_2_251_0/} }
TY - JOUR AU - Paul M. Voutier TI - Primitive divisors of Lucas and Lehmer sequences, II JO - Journal de théorie des nombres de Bordeaux PY - 1996 SP - 251 EP - 274 VL - 8 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1996__8_2_251_0/ LA - en ID - JTNB_1996__8_2_251_0 ER -
Paul M. Voutier. Primitive divisors of Lucas and Lehmer sequences, II. Journal de théorie des nombres de Bordeaux, Tome 8 (1996) no. 2, pp. 251-274. https://jtnb.centre-mersenne.org/item/JTNB_1996__8_2_251_0/
[1] On the size of the coefficients of the cyclotomic polynomial, Topics in Classical Number Theory,, (Budapest, 1981), Colloquia Mathematica Societatis Janos Bolyai, 34, North-Holland, New York, 1984. | MR | Zbl
, and ,,[2] On the integral divisors of an - bn, Ann. of Math. (2) 5 (1904), 173-180. | JFM | MR
and ,[3] On the coefficients of the cyclotomic polynomials, Amer. Math. Monthly 75 (1968), 372-377. | MR | Zbl
,[4] On the numerical factors of the arithmetic forms an ±βn, Ann. of Math. (2) 15 (1913), 30-70. | JFM
,[5] Exceptional real Lehmer sequences, Pacific J. Math. 9 (1959), 437-441. | MR | Zbl
[6] An Introduction to the Theory of Numbers, Oxford University Press, 5th edition, 1978. | MR | Zbl
and ,[7] Field Theory: Classical Foundations and Multiplicative Groups, Marcel Dekker, New York, 1988. | MR | Zbl
,[8] Formes Linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory, to appear. | Zbl
, and ,[9] The distribution of totatives, Canadian J. Math. 7 (1955), 347-357. | MR | Zbl
,[10] Lower bounds for linear forms in logarithms, New Advances in Transcendence Theory (A. Baker, ed.), Cambridge University Press, Cambridge, 1988. | MR
and ,[11] Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction w(n) nombre de diviseurs premiers de n, Acta Arith. XLII (1983), 367-389. | EuDML | Zbl
,[12] Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94. | MR | Zbl
and ,[13] Primitive divisors of the expression An - Bn in algebraic number fields, J. Reine Angew. Math. 268/269 (1974), 27-33. | EuDML | MR | Zbl
,[14] Primitive divisors of Lucas and Lehmer sequences, Transcendence Theory: Advances and Applications (A. Baker and D.W. Masser, eds.), Academic Press, New York, 1977. | MR
,[15] On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers, Proc. London Math. Soc. (3) 35 (1977), 425-447. | MR | Zbl
,[16] Primitive divisors of Lucas and Lehmer sequences, Math. Comp. 64 (1995), 869-888. | MR | Zbl
,[17] An effective lower bound for the height of algebraic numbers, Acta Arith., (to appear). | MR | Zbl
,[18] Linear Independence of Logarithms of Algebraic Numbers, IMSc Report No 116 (1992), The Institute of Mathematical Sciences, Madras. | Zbl
,[19] The intrinsic divisors of Lehmer numbers, Ann. of Math. (2) 62 (1955), 230-236. | MR | Zbl
,[20] Zur Theorie der Potenzreste, Monatsh. Math. 3 (1892), 265-284. | JFM | MR
,