Soit une extension d'un corps de nombres, où est abélienne sur . On établit ici une description explicite de l'ordre associé de cette extension dans le cas où est un corps cyclotomique, et on démontre que l'anneau des entiers de est isomorphe à . Cela généralise des résultats antérieurs de Leopoldt, Chan & Lim et Bley. De plus, on montre que est l'ordre maximal si est une extension cyclique, totalement et sauvagement ramifiée, linéairement disjointe de , où désigne le conducteur de .
Let be an extension of algebraic number fields, where is abelian over . In this paper we give an explicit description of the associated order of this extension when is a cyclotomic field, and prove that , the ring of integers of , is then isomorphic to . This generalizes previous results of Leopoldt, Chan & Lim and Bley. Furthermore we show that is the maximal order if is a cyclic and totally wildly ramified extension which is linearly disjoint to , where is the conductor of .
@article{JTNB_1996__8_1_125_0, author = {Nigel P. Byott and G\"unter Lettl}, title = {Relative {Galois} module structure of integers of abelian fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {125--141}, publisher = {Universit\'e Bordeaux I}, volume = {8}, number = {1}, year = {1996}, zbl = {0859.11059}, mrnumber = {1399950}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_1996__8_1_125_0/} }
TY - JOUR AU - Nigel P. Byott AU - Günter Lettl TI - Relative Galois module structure of integers of abelian fields JO - Journal de théorie des nombres de Bordeaux PY - 1996 SP - 125 EP - 141 VL - 8 IS - 1 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1996__8_1_125_0/ LA - en ID - JTNB_1996__8_1_125_0 ER -
%0 Journal Article %A Nigel P. Byott %A Günter Lettl %T Relative Galois module structure of integers of abelian fields %J Journal de théorie des nombres de Bordeaux %D 1996 %P 125-141 %V 8 %N 1 %I Université Bordeaux I %U https://jtnb.centre-mersenne.org/item/JTNB_1996__8_1_125_0/ %G en %F JTNB_1996__8_1_125_0
Nigel P. Byott; Günter Lettl. Relative Galois module structure of integers of abelian fields. Journal de théorie des nombres de Bordeaux, Tome 8 (1996) no. 1, pp. 125-141. https://jtnb.centre-mersenne.org/item/JTNB_1996__8_1_125_0/
[1] A Leopoldt-type result for rings of integers of cyclotomic extensions, Canad. Math. Bull. 38 (1995), 141 - 148. | MR | Zbl
,[2] Normal integral bases and complex conjugation, J reine angew. Math. 375/376 (1987), 157 - 166. | EuDML | MR | Zbl
,[3] Relative Galois module structure of rings of integers of cyclotomic fields, J. reine angew. Math. 434 (1993), 205 -220. | EuDML | MR | Zbl
& ,[4] Galois module structure of algebraic integers, Erg. d. Math. 3, vol. 1, Springer, 1983. | MR | Zbl
,[5] Algebraic number theory, Camb. Studies Adv. Math. vol. 27, Cambridge University Press, 1991. | Zbl
& ,[6] Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. reine angew. Math. 201 (1959), 119 -149. | EuDML | MR | Zbl
,[7] The ring of integers of an abelian number field, J. reine angew. Math. 404 (1990), 162-170. | EuDML | MR | Zbl
,[8] Note on the Galois module structure of quadratic extensions, Coll. Math. 67 (1994), 15 - 19. | EuDML | MR | Zbl
,[9] Group rings and class groups, DMV-Seminar Bd. 18, Birkhäuser, 1992. | MR | Zbl
& ,[10] Relative Galois module structure of rings of integers, Orders and their applications (Proceedings of Oberwolfach 1984) (I. Reiner & K.W. Roggenkamp, eds.), Lect. Notes 1142, Springer, 1985, pp. 289-306. | MR | Zbl
,