Herein we introduce the palindromic index as a device for studying ambiguous cycles of reduced ideals with no ambiguous ideal in the cycle.
Keywords: quadratic order, class number, palindromic index, ambiguous cycle, continued fractions, reduced ideals
@article{JTNB_1995__7_2_447_0,
author = {Richard A. Mollin},
title = {The palindromic index - {A} measure of ambiguous cycles of reduced ideals without any ambiguous ideals in real quadratic orders},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {447--460},
year = {1995},
publisher = {Universit\'e Bordeaux I},
volume = {7},
number = {2},
zbl = {0855.11054},
mrnumber = {1378590},
language = {en},
url = {https://jtnb.centre-mersenne.org/item/JTNB_1995__7_2_447_0/}
}
TY - JOUR AU - Richard A. Mollin TI - The palindromic index - A measure of ambiguous cycles of reduced ideals without any ambiguous ideals in real quadratic orders JO - Journal de théorie des nombres de Bordeaux PY - 1995 SP - 447 EP - 460 VL - 7 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1995__7_2_447_0/ LA - en ID - JTNB_1995__7_2_447_0 ER -
%0 Journal Article %A Richard A. Mollin %T The palindromic index - A measure of ambiguous cycles of reduced ideals without any ambiguous ideals in real quadratic orders %J Journal de théorie des nombres de Bordeaux %D 1995 %P 447-460 %V 7 %N 2 %I Université Bordeaux I %U https://jtnb.centre-mersenne.org/item/JTNB_1995__7_2_447_0/ %G en %F JTNB_1995__7_2_447_0
Richard A. Mollin. The palindromic index - A measure of ambiguous cycles of reduced ideals without any ambiguous ideals in real quadratic orders. Journal de théorie des nombres de Bordeaux, Tome 7 (1995) no. 2, pp. 447-460. https://jtnb.centre-mersenne.org/item/JTNB_1995__7_2_447_0/
[1] , A second course in number theory, John Wiley and Sons Inc., New York/London (1962). | Zbl | MR
[2] , A course in computational algebraic number theory, Springer-Verlag, Berlin, Graduate Texts in Mathematics 138, (1993). | Zbl | MR
[3] , Prime-producing quadratic polynomials and class numbers of quadratic orders in Computational Number Theory, (A. Pethô, M. Pohst, H.C. Williams, and H.G. Zimmer eds.) Walter de Gruyter, Berlin (1991), 73-82. | Zbl | MR
[4] , , and , Infrastructure des Classes Ambiges D'Idéaux des ordres des corps quadratiques réels, L'Enseignement Math 37 (1991), 263-292. | Zbl | MR
[5] and , The distance between ideals in the orders of real quadratic fields, L'Enseignment Math. 36 (1990), 321-358. | Zbl | MR
[6] , Groupes des classes d'ideaux triviaux, Acta. Arith. LIV (1989), 61-74. | Zbl | MR
[7] , and , Class numbers of real quadratic fields, continued fractions, raeduced ideals, prime-producing quadratic polynomials, and quadratic residue covers, Can. J. Math. 44 (1992), 824-842. | Zbl | MR
[8] , Ambiguous Classes in Real Quadratic Fields, Math Comp. 61 (1993), 355-360. | Zbl | MR
[9] and , Classification and enumeration of real quadratic fields having exactly one non-inert prime less than a Minkowski bound, Can. Math. Bull. 36 (1993), 108-115. | Zbl | MR
[10] and , On the parallel generation of the residues for the continued fraction factoring algorithm, Math. Comp. 77 (1987), 405-423. | Zbl | MR