It is well known that the continued fraction expansion of
Il est bien connu que le développement en fraction continue de
@article{JTNB_1994__6_2_421_0, author = {R. A. Mollin and A. J. Van der Poorten and H. C. Williams}, title = {Halfway to a solution of $X^2 - DY^2 = -3$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {421--457}, publisher = {Universit\'e Bordeaux I}, volume = {6}, number = {2}, year = {1994}, zbl = {0820.11015}, mrnumber = {1360654}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_1994__6_2_421_0/} }
TY - JOUR AU - R. A. Mollin AU - A. J. Van der Poorten AU - H. C. Williams TI - Halfway to a solution of $X^2 - DY^2 = -3$ JO - Journal de théorie des nombres de Bordeaux PY - 1994 SP - 421 EP - 457 VL - 6 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1994__6_2_421_0/ LA - en ID - JTNB_1994__6_2_421_0 ER -
%0 Journal Article %A R. A. Mollin %A A. J. Van der Poorten %A H. C. Williams %T Halfway to a solution of $X^2 - DY^2 = -3$ %J Journal de théorie des nombres de Bordeaux %D 1994 %P 421-457 %V 6 %N 2 %I Université Bordeaux I %U https://jtnb.centre-mersenne.org/item/JTNB_1994__6_2_421_0/ %G en %F JTNB_1994__6_2_421_0
R. A. Mollin; A. J. Van der Poorten; H. C. Williams. Halfway to a solution of $X^2 - DY^2 = -3$. Journal de théorie des nombres de Bordeaux, Tome 6 (1994) no. 2, pp. 421-457. https://jtnb.centre-mersenne.org/item/JTNB_1994__6_2_421_0/
[1] On the calculation of regulators and class numbers of quadratic fields, J. V. ARMITAGE ed., Journées Arithmétiques 1980, LMS Lecture Notes 56, Cambridge, 1982, pp. 123-151.. | MR | Zbl
,[2] A note on symmetry and ambiguity, Bull. Austral. Math. Soc. 51 (1995), 215-233. | MR | Zbl
and ,[3] Die Lehre von den Kettenbrüchen, (Chelsea reprint of 1929 edition). | Zbl
,[4] An introduction to continued fractions, Diophantine Analysis, LMS Lecture Notes in Math. 109, ed. J. H. LOXTON and A. J. VAN DER POORTEN, Cambridge University Press, 1986, pp. 99-138. | MR | Zbl
,[5] Fractions of the period of the continued fraction expansion of quadratic integers, Bull. Austral. Math. Soc 44 (1991), 155-169. | MR | Zbl
,[6] Class number, a theory of factorization, and genera, Proc. Symp. Pure Math., 20 (1969 Institute on Number Theory), Amer. Math. Soc., Providence 1971, pp. 415-440, see also The infrastructure of a real quadratic field and its applications, Proc. Number Theory Conference, Boulder, 1972. | MR | Zbl
,[7] On Gauβ and composition, Number Theory and Applications, Richard A. MOLLIN ed. (NATO - Advanced Study Institute, Banff, 1988), Kluwer Academic Publishers, Dordrecht, 1989, pp. 163-204.
,