Polynomials whose Galois groups are Frobenius groups with prime order complement
Journal de théorie des nombres de Bordeaux, Tome 6 (1994) no. 2, pp. 391-406.

On donne une caractérisation effective des polynômes irréductibles de degré n à coefficients entiers dont les groupes de Galois sur sont des groupes de Frobenius avec noyau d’ordre n et complément d’ordre premier.

We give an effective characterization theorem for integral monic irreducible polynomials f of degree n whose Galois groups over are Frobenius groups with kernel of order n and complement of prime order.

Classification : Primary 12F10, 12Y05, Secondary 12F12, 12-04
Mots-clés : effective characterization of polynomials with given Galois groups, Frobenius groups with prime order complement
@article{JTNB_1994__6_2_391_0,
     author = {Leonardo Cangelmi},
     title = {Polynomials whose {Galois} groups are {Frobenius} groups with prime order complement},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {391--406},
     publisher = {Universit\'e Bordeaux I},
     volume = {6},
     number = {2},
     year = {1994},
     zbl = {0828.12004},
     mrnumber = {1360652},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/item/JTNB_1994__6_2_391_0/}
}
TY  - JOUR
AU  - Leonardo Cangelmi
TI  - Polynomials whose Galois groups are Frobenius groups with prime order complement
JO  - Journal de théorie des nombres de Bordeaux
PY  - 1994
SP  - 391
EP  - 406
VL  - 6
IS  - 2
PB  - Université Bordeaux I
UR  - https://jtnb.centre-mersenne.org/item/JTNB_1994__6_2_391_0/
LA  - en
ID  - JTNB_1994__6_2_391_0
ER  - 
%0 Journal Article
%A Leonardo Cangelmi
%T Polynomials whose Galois groups are Frobenius groups with prime order complement
%J Journal de théorie des nombres de Bordeaux
%D 1994
%P 391-406
%V 6
%N 2
%I Université Bordeaux I
%U https://jtnb.centre-mersenne.org/item/JTNB_1994__6_2_391_0/
%G en
%F JTNB_1994__6_2_391_0
Leonardo Cangelmi. Polynomials whose Galois groups are Frobenius groups with prime order complement. Journal de théorie des nombres de Bordeaux, Tome 6 (1994) no. 2, pp. 391-406. https://jtnb.centre-mersenne.org/item/JTNB_1994__6_2_391_0/

[BJY] A.A. Bruen, C.U. Jensen, N. Yui, Polynomials with Frobenius groups of prime deegre as Galois groups II, J. Number Theory 24 (1986), 305-359. | MR | Zbl

[Frob] G. Frobenius, Über Beziehungen zwischen den Primidealen eines algebraischen Körpers und den Substitution seiner Gruppe, S. B. Akad. Wiss. Berlin (1896), 689-705. | JFM

[Jac] N. Jacobson, Basic algebra I, 2nd ed., Freeman, New York, 1985. | MR | Zbl

[Lang] S. Lang, Algebraic number theory, GTM 110, Springer-Verlag, New York, 1986. | MR | Zbl

[LMO] J.C. Lagarias, H.L. Montgomery, A.M. Odlyzko, A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math. 54 (1979), 271-296. | MR | Zbl

[Oes] J. Oesterlé, Versions effectives du théorème de Chebotarev sous l'hypothèse de Riemann généralisé, Astérisque 61 (1979), 165-167. | Zbl

[Rob] D.J.S. Robinson, A course in the theory of groups, GTM 80, Springer-Verlag, New York, 1982. | MR | Zbl

[Trag] B.M. Trager, Algebraic factoring and rational function integration, ACM Symposium on Symbolic and Algebraic Computation 1976 (Jenks, ed.), ACM Inc., New York, 1976, pp. 219-226. | Zbl

[vdW] B. L. Van Der Waerden, Modern algebra, 2nd ed., vol. I, Ungar, New York, 1953. | Zbl

[Will] C.J. Williamson, Odd degree polynomials with dihedral Galois groups, J. Number Theory 34 (1990), 153-173. | MR | Zbl