Let be a system of disjoint subsets of . In this paper we examine the existence of an increasing sequence of natural numbers, , that is an asymptotic basis of all infinite elements of simultaneously, satisfying certain conditions on the rate of growth of the number of representations , for all sufficiently large and A theorem of P. Erdös is generalized.
@article{JTNB_1994__6_1_9_0, author = {Martin Helm}, title = {A generalization of a theorem of {Erd\"os} on asymptotic basis of order $2$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {9--19}, publisher = {Universit\'e Bordeaux I}, volume = {6}, number = {1}, year = {1994}, zbl = {0812.11011}, mrnumber = {1305285}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_1994__6_1_9_0/} }
TY - JOUR AU - Martin Helm TI - A generalization of a theorem of Erdös on asymptotic basis of order $2$ JO - Journal de théorie des nombres de Bordeaux PY - 1994 SP - 9 EP - 19 VL - 6 IS - 1 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1994__6_1_9_0/ LA - en ID - JTNB_1994__6_1_9_0 ER -
Martin Helm. A generalization of a theorem of Erdös on asymptotic basis of order $2$. Journal de théorie des nombres de Bordeaux, Tome 6 (1994) no. 1, pp. 9-19. https://jtnb.centre-mersenne.org/item/JTNB_1994__6_1_9_0/
[1] Problems and results in additive number theory, Colloque sur la Théorie des Nombres (CBRM), Bruxelles (1956), 127-137. | MR | Zbl
,[2] Additive properties of random sequences of positive integers, Acta Arith. 6 (1960), 83-110. | MR | Zbl
and ,[3] Sequences, Springer-Verlag, New-York Heidelberg Berlin (1983). | MR | Zbl
and ,[4] On a probabilistic method in additive number theory, Groupe de travail en théorie analytique et élémentaire des nombres, (1987-1988), Publications Mathématiques d'Orsay 89-01, Univ. Paris, Orsay (1989), 71-92. | MR | Zbl
,[5] Ein Satz über trigonometrische Polynorne und seine Anwendung in der Theorie des Fourier-Reihen, Math. Ann. 106 (1932), 539-539. | JFM | Zbl
,