@article{JTNB_1993__5_2_411_0, author = {Adolf Hildebrand and Gerald Tenenbaum}, title = {Integers without large prime factors}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {411--484}, publisher = {Universit\'e Bordeaux I}, volume = {5}, number = {2}, year = {1993}, zbl = {0797.11070}, mrnumber = {1265913}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_1993__5_2_411_0/} }
TY - JOUR AU - Adolf Hildebrand AU - Gerald Tenenbaum TI - Integers without large prime factors JO - Journal de théorie des nombres de Bordeaux PY - 1993 SP - 411 EP - 484 VL - 5 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1993__5_2_411_0/ LA - en ID - JTNB_1993__5_2_411_0 ER -
Adolf Hildebrand; Gerald Tenenbaum. Integers without large prime factors. Journal de théorie des nombres de Bordeaux, Tome 5 (1993) no. 2, pp. 411-484. https://jtnb.centre-mersenne.org/item/JTNB_1993__5_2_411_0/
Handbook of Mathematical Functions, National Bureau of Standards, Wash ington 1964; Tenth Printing, Dover, New York, 1972.
& , (1964)There are infinitely many Carmichael numbers, preprint. | MR
, , & , (1993)Asymptotic estimates of sums involving the Moebius function. II, Trans. Amer. Math. Soc. 272, 87-105. | MR | Zbl
, (1982a)(1982b) The Turán-Kubilius inequality for integers without large prime factors, J. Reine Angew. Math. 335, 180-196. | MR | Zbl
(1987) An Erdös-Kac theorem for integers without large prime factors, Acta Arith. 49, 81-105. | MR | Zbl
On an additive arithmetic function, Pacific J. Math. 71, 275-294. | MR | Zbl
and , (1977)(1979) On the asymptotic behavior of large prime factors of integers, Pacific J. Math. 82, 295-315. | MR | Zbl
p + a without large prime factors, in: Séminaire de Théorie des Nombres, Bordeaux 1983-84, Univ. Bordeaux, Talence, Exp. No. 31, 5 pp. | MR | Zbl
, (1984)(1987) On the distribution of integers having no large prime factor, in: Journées Arithmétiques, Besançon 1985, Astérisque 147/148, pp. 27-31. | MR | Zbl
(1989) On additive representations of integers, Acta Math. Hungar. 54, 297-301. | MR | Zbl
On arithmetic functions involving consecutive divisors, in: Analytic Number Theory (B. C. Berndt et al., eds.), Proc. Conf. in Honor of Paul T. Bateman, Birkhäuser, Progress in Math. 85, 77-90. | MR | Zbl
, , & , (1990)The distribution of smooth numbers in arithmetic progressions, Amer. Math. Soc. 115, 33-43. | MR | Zbl
& , (1992)On sums of integers having small prime factors. I, Stud. Sci. Math. Hungar. 19, 35-47. | MR | Zbl
& , (1984a)(1984b) On sums of integers having small prime factors. II, Stud. Sci. Math. Hungar. 19, 81-88. | Zbl
The lattice-points of n-dimensional tedrahedra, Indag. Math. 37, 365-372. | MR | Zbl
, (1975)On the distribution of large prime divisors, Period. Math. Hungar. 2, 283-289. | MR | Zbl
, (1972)Two number theoretic sums, Math. Centrum Amsterdam, Report ZW 19/74. | MR | Zbl
, (1974)The asymptotic behaviour of a function occurring in the theory of primes, J. Indian Math. Soc. (N.S.) 15, 25-32. | MR | Zbl
, (1951a)(1951b) On the number of positive integers ≤ x and free of prime factors > y, Nederl. Akad. Wetensch. Proc. Ser. A 54, 50-60. | Zbl
(1966) On the number of positive integers ≤ x and free of prime factors > y, II, Nederl. Akad. Wetensch. Proc. Ser. A 69, 239-247. | Zbl
Incomplete sums of multiplicative functions I, II, Nederl. Akad. Wetensch. Proc. Ser. A 67, 339-347; 348-359. | MR | Zbl
& , (1964)On those numbers in an arithmetic progression all prime factors of which are small in magnitude (Russian), Dokl. Akad. Na u k SSSR 67, 5-8. | MR
, (1949)On the asymptotic behavior of the Dickman-de Bruijn function, Congr. Numer. 38, 139-148. | MR | Zbl
, (1982)On a problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory 17, 1-28. | MR | Zbl
Erdös, & , (1983)Théorèmes de densité dans Fq[X], Acta Arith. 48, 145-165. | MR | Zbl
, (1987)On the largest prime divisors of numbers, J. Indian Math. Soc. (N. S.) 11, 31-37. | MR | Zbl
and , (1947)Sums taken over n ≤ x with prime factors ≤ y of zΩ(n), and their derivatives with respect to z, J. Indian Math. Soc. (N. S.) 42, 353-365. | Zbl
& , (1978)Sommes de réciproques de grandes fonctions additives, Publ. Inst. Math. (Beograd) (N. S.) 35, 41-48. | MR | Zbl
& , (1984a)(1984b) The distribution of the average prime divisor of an integer, Arch. Math. 43, 37-43. | Zbl
Les fonctions arithmetiques et le plus grand facteur premier, Acta Arith. 52, 25-48. | MR | Zbl
& , (1989)On the greatest prime factor of n2+1, Ann. Inst. Fourier (Grenoble) 32, 1-11. | Numdam | MR | Zbl
& , (1982)On the frequency of numbers containing prime factors of a certain relative magnitude, Ark. Mat. Astr. Fys. 22, 1-14. | JFM
, (1930)Consecutive integers with no large prime factors, J. Austral. Math. Soc. Ser. A 22, 1-11. | MR | Zbl
& , (1976)On numbers with small prime divisors, Ann. Acad. Sci. Fenn. Ser. AI 440, 16 pp. | MR | Zbl
, (1969)On the normal number of prime factors of p -1 and some other related problems concerning Euler's Φ-function, Quart. J. Math. (Oxford) 6, 205-213. | JFM
, (1935)(1952) On the greatest prime factor of Π f (k), J. London Math. Soc. 2 7, 379-384. | Zbl
(1955) On consecutive integers, Nieuw Arch. Wisk. (3) 3, 124-128. | MR | Zbl
Estimates for sums involving the largest prime factor of an integer and certain related additive functions, Stud. Sci. Math. Hungar. 15, 183-199. | MR | Zbl
& , (1980)On sums involving reciprocals of the largest prime factor of an integer, Glas. Mat. III. Ser. 21 (41), 283-300. | MR | Zbl
, , and , (1986)On the greatest prime factor of Πx k=1 f(k), Acta Arith. 55, 191-200. | Zbl
& , (1990)On the estimation from below of the number of numbers with small prime factors (Russian), Dokl. Akad. Nauk USSR 7, 3-5. | MR
, (1967)On the switching principle in sieve theory, J. Reine Angew. Math. 370, 101-126. | MR | Zbl
& , (1986)Diviseurs de Titchmarsh des entiers sans grand facteur premier, in: Analytic Number Theory (E. Fouvry, ed.), Tokyo 1988, Lecture Notes in Math. 1434, Springer, Berlin, pp. 86-102. | MR | Zbl
& , (1990)(1991) Entiers sans grand facteur premier en progressions arithmétiques, London Math. Soc. (3) 63, 449-494. | MR | Zbl
On the number of ideals free of large prime divisors, J. Reine Angew. Math. 255, 1-7. | MR | Zbl
, (1972)(1973a) On the least kth power residue in an algebraic number field, London Math. Soc. (3) 26, 19-34. | Zbl
(1973b) Integers without large prime factors, Nederl. Akad. Wetensch. Proc. Ser. A 76, 443-451. | MR | Zbl
(1976) Integers free from large and small primes, Proc. London Math. Soc. (3) 33, 565-576. | MR | Zbl
(1981) Integers without large prime factors. II, Acta Arith. 39, 53-57. | MR | Zbl
(1984a) Large prime factors in small intervals, in: Topics in classical number theory, Colloqu. Math. Soc. Janos Bolyai 34, North-Holland, Amsterdam, 511-518. | MR | Zbl
(1984b) Integers without large prime factors. III, Arch. Math. 43, 32-36. | MR | Zbl
(1985) Notes on Chebyshev's method, Rocky Mountain J. Math. 15, 377-383. | MR | Zbl
(1989) Shifted primes without large prime factors, in: Number Theory and Applications (R. A. Mollin, ed.), Kluver, pp. 393-401. | MR
On the distribution in short intervals of integers having no large prime factor, J. Number Theory 25, 249-273. | MR | Zbl
& , (1987)The sequence of prime divisors of integers, Acta Arith. 31, 213-218. | MR | Zbl
, (1976)On the largest prime divisor of ideals in fields of degree n, Duke Math. J. 37, 589-600. | MR | Zbl
, (1970)Sieving the positive integers by large primes, J. Number Theory 28, 94-115. | MR | Zbl
& , (1988)On positive integers ≤ x with prime factors ≤ tlog x, in: Number Theory and Applications (R. A. Mollin, ed.), Kluver, pp. 403-422. | Zbl
, (1989)(1991a) The lattice points of an n-dimensional tedrahedron, Aequationes Math. 41, 234-241. | MR | Zbl
(1991b) On pairs of coprime integers with no large prime factors, Expos. Math. 9, 335-350. | MR | Zbl
(1993a) Integers, without large prime factors, in arithmetic progressions. I, Acta Math. 170, 255-273. | MR | Zbl
(1993b) Integers, without large prime factors, in arithmetic progressions. II, preprint.
On smooth numbers in short intervals under the Riemann Hypothesis, preprint.
, (1993)Mean value theorems for a class of arithmetic functions, Acta Arith. 18, 243-256; Add. & Corr., ibid. 28, 107-110. | MR | Zbl
& , (1971)(1974) Sieve Methods, Academic Press, London, New York, San Francisco. | MR
On the gaps between consecutive k-free integers, J. London Math. Soc. 26, 268-273. | MR | Zbl
& , (1951)Short intervals containing numbers without large prime factors, Math. Proc. Cambridge Philos. Soc. 109, 1-5. | MR | Zbl
, (1991)On integers all of whose prime factors are small, Bull. London Math. Soc. 5, 159-163. | MR | Zbl
, (1973)(1975a) On k-free integers with small prime factors, Proc. Amer. Math. Soc. 52, 40-44. | MR | Zbl
(1975b) Sums over positive integers with few prime factors, J. Number Theory 7, 189-207. | MR | Zbl
(1975c) On sums over Gaussian integers, Trans. Amer. Math. Soc. 209, 295-310. | MR | Zbl
(1977) On ideals having only small prime factors, Rocky Mountain J. Math. 7, 753-768. | MR | Zbl
Consecutive almost-primes, J. Indian Math. Soc. (N. S.) 52, 39-49. | MR | Zbl
, (1987)The number of positive integers ≤ x and free of prime divisors > y, J. Number Theory 21, 286-298. | Zbl
, (1985)(1986) A property of the counting function of integers with no large prime factors, J. Number Theory 22, 46-74. | MR | Zbl
(1987) The distribution of Ω(n) among numbers with no large prime factors, in: Analytic Number Theory and Diophantine Problems (A. Adolphson et al., eds.), Proc. of a Conf. at Oklahoma State University 1984, Birkhauser, Progress in Math. 70, 247-281. | Zbl
Integers free of large prime factors and the Riemann Hypothesis, Mathematika 31, 258-271. | MR | Zbl
, (1984a)(1984b) On a problem of Erdös and Alladi, Monatsh. Math. 97, 119-124. | MR | Zbl
(1985a) Integers free of large prime factors in short intervals, Quart. J. Math. (Oxford) (2) 36, 57-69. | Zbl
(1985b) On a conjecture of A. Balog, Proc. Amer. Math. Soc. 95, 517-523. | Zbl
(1986a) On the number of positive integers < x and free of prime factors > y, J. Number Theory 22, 289-307. | MR | Zbl
(1986b) On the local behavior of Ψ(x, y), Trans. Amer. Math. Soc. 297, 729-751. | Zbl
(1987) On the number of prime factors of integers without large prime divisors, J. Number Theory 25, 81-106. | MR | Zbl
(1989) Integer sets containing strings of consecutive integers, Mathematika 36, 60-70. | MR | Zbl
On integers free of large prime factors, Trans. Amer. Math. Soc. 296, 265-290. | MR | Zbl
& , (1986)(1993) On a class of difference differential equations arising in number theory, J. d'Analyse Math. 61, 145-179. | MR | Zbl
On polynomials with small prime divisors (Russian), Dokl. Akad. Nauk SSSR 155, 1268-1271. | MR | Zbl
, (1964)(1966) On polynomials with small prime divisors. II (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 30, 1367-1372. | MR
On the greatest prime factor of a quadratic polynomial, Acta Math. 117, 2-16. | MR | Zbl
, (1967)(1978) On the greatest prime factor of a cubic polynomial, J. Reine Angew. Math. 303/304, 21-50. | MR | Zbl
Sum of reciprocals of the largest prime factor of an integer, Arch. Math. 36, 57-61. | MR | Zbl
, (1981)(1985a) The Riemann zeta-function, Wiley, New York. | Zbl
(1985b) On squarefree numbers with restricted prime factors, Stud. Sci. Math. Hungar. 20, 183-187. | MR
(1987) On some estimates involving the number of prime divisors of an integer, Acta Arith. 49, 21-33. | MR | Zbl
Zur Verteilung gewisser Primzahlprodukte, Math. Ann. 139, 14-30. | MR | Zbl
, (1959)Estimates for certain sums involving the largest prime factor of an integer, in: Topics in classical number theory, Colloq. Budapest 1981, Colloq. Math. Soc. Janos Bolyai 34, pp. 769-789. | MR | Zbl
and , (1984)Local densities over integers free of large prime factors, Quart. J. Math. (Oxford) (2) 37, 401-417. | MR | Zbl
and , (1986)The divisibility of Gaussian integers by large Gaussian primes, Duke Math. J. 32, 503-510. | MR | Zbl
, (1965)On numbers with a large prime factor. II, J. Indian Math. Soc.(N. S.) 38, 125-130. | MR | Zbl
, (1974)Analysis of a simple factorization algorithm, Theoret. Comput. Sci. 3, 321-348. | MR | Zbl
& , (1976)Abschätzungen für die Funktion ΨK (x,y) in algebraischen Zahlkörpern, Manuscripta Math. 69, 319-331. | Zbl
, (1990)Plus grand facteur premier d'entiers voisins, C. R. Acad. Sci. Paris Sér. A-B 281, A491-A493. | MR | Zbl
, (1975)On the first case of Fermat's last theorem, Bull. Amer. Math. Soc. 47, 139-142. | JFM | MR | Zbl
& , (1941)Factoring integers with elliptic curves, Ann. Alath. 126, 649-673. | MR | Zbl
(1987)Sums of multiplicative functions with respect to numbers with prime divisors from given intervals (Russian), Dokl. Akad. Nauk. Tadzh. SSSR 29, 383-387. | MR | Zbl
& , (1986)Application of some integral equations to problems in number theory, Russian Math. Surveys 22, 119-204. | MR | Zbl
& , (1967)Über die Surmme Σn≤x,P(n)≤ y μ2(n)/ϕ(n), Nederl. Akad. Wetensch. Proc. Ser. A 67, 582-587. | Zbl
& , (1964)Ordered prime divisors of a random integer, Ann. Probability 12, 1205-1212. | MR | Zbl
, (1984)Rigorous, subexponential algorithms for discrete logarithms over finite fields, Ph.D. thesis, Univ. of Georgia, 1992.
, (1992)The truncated average limit and one of its applications in analytic number theory, Math. Centrum Amsterdam, Report ZW 20/74. | MR | Zbl
, (1974)Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, Berlin. | MR | Zbl
, (1971)An interval result for the number field Ψ (x, y ) function, Manuscripta Math. 76, 437-450. | Zbl
, (1992)(1993) Psixyology and Diophantine equations, Thesis, Leiden University. | MR | Zbl
Some Ramanujan-Nagell equations with many solutions, Indag. Math.(N. S.) 1, 465-472. | MR | Zbl
& , (1990)An induction principle for the generalization of Bombieri's prime number theorem, Proc. Japan Acad. 52, 273-275. | MR | Zbl
, (1976)(1979) A note on almost primes in short intervals, Proc. Japan Acad. Sci. Ser. A Math. Sci. 55 (1979), 225-226. | MR | Zbl
Les entiers sans facteur carre ≤ x dont les facteurs premiers sont ≤y, in: Groupe de travail en théorie analytique des nombres 1986-87, Publ. Math. Orsay 88-01, pp. 69-76. | Zbl
, (1988)Generalisation d'un théorème de Tchébycheff, J. Math. Pur. Appl. (8) 4, 343-356. | JFM
, (1921)Upper bounds for kth power coset representatives modulo n, Acta Arith. 15, 161-179. | MR | Zbl
, (1968)(1971) Numbers with small prime factors and the least kth power non residue, Memoirs of the Amer. Math. Soc. 106. | Zbl
Discrete logarithms in finite fields and their cryptographic significance, in Advances in Cryptology: Proceedings of Eurocrypt '84, (T. Beth, N. Cot, I. Ingemarsson, eds.), Lecture Notes in Computer Science 209, Springer-Verlag. | MR | Zbl
, (1985)(1993) Discrete logarithms and smooth polynomials, preprint.
Popular values of Euler's function, Mathematika 27, 84-89. | MR | Zbl
, (1980)(1987) Fast, rigorous factorization and discrete logarithm algorithms, in: Discrete Algorithms and Complexity (Kyoto, 1986), Academic Press, Boston. | MR | Zbl
A note on numbers with a large prime factor. J. London Math. Soc. (2) 1, 303-306. | MR | Zbl
, (1969)(1970) A note on numbers with a large prime factor. II, J. Indian Math. Soc.(N. S.) 34, 39-48. | MR | Zbl
(1971) A note on numbers with a large prime factor. III, Acta Arith. 19, 49-62. | MR | Zbl
On gaps between numbers with a large prime factor, Acta Arith. 24, 99-111. | MR | Zbl
& , (1973)On the number of positive integers less than x and free of prime divisors greater than xc, Bull. Amer. Math. Soc. 55, 1122-1127. | MR | Zbl
, (1949)(1951) Number of integers in an assigned arithmetic progression, ≤ x and prime to primes greater than xc, Proc. Amer. Math. Soc. 2, 318-319. | Zbl
The difference between consecutive prime numbers, J. London Math. Soc. 13, 242-247. | JFM | Zbl
, (1938)On the largest prime divisor of an integer, Indag. Math. 37, 70-76. | MR | Zbl
, (1975)Sur le nombre des entiers sans grand facteur premier, J. Number Theory 3 2, 78-99. | MR | Zbl
, (1989)(1992) Entiers sans grand ni petit facteur premier. I, Acta Arith. 61, 347-374. | MR | Zbl
On some sums involving the largest prime divisor of n, Acta Arith. 59, no 4, 339-363. | MR | Zbl
, (1991)On gaps between numbers with a large prime factor II, Acta Arith. 25, 365-373. | MR | Zbl
, (1973)Sur les puissances de convolution de la fonction de Dickman, Acta Arith. 59, no 2, 123-143. | MR | Zbl
, (1991)(1993) Valeur moyenne des fonctions de Piltz sur les entiers sans grand facteur premier, Acta Arith. 63, no 1, 21-50. | MR | Zbl
Zahlenfolgen mit endlich vielen Primteilern, S.-B. Bayer. Akad. Wiss. Math. Nat. Abt. 1948, 149-169. | MR | Zbl
, (1949)Sur les entiers sans grand facteur premier, in: Séminaire de Théorie des Nombres, Bordeaux 1984-85, Univ. Bordeaux I, Talence, 12 pp. | MR
, (1985)(1988) La méthode du col en théorie analytique des nombres, in: Séminaire de Théorie des Nombres (C. Goldstein, ed.), Paris 1985-86, Birkhäuser, Progress in Math. 75, 411-441. | MR | Zbl
(1990a) Introduction à la théorie analytique et probabiliste des nombres, Publ. Inst. Elie Cartan, Vol. 13, Univ. Nancy 1. | Zbl
(1990b) Sur un problème d'Erdös et Alladi, in: Séminaire de Théorie des Nombres (C. Goldstein, ed.), Paris 1988-89, Birkhäuser, Progress in Math. 91, 221-239. | Zbl
(1990c) Sur une question d'Erdös et Schinzel II, Inventiones Math. 99, 215-224. | Zbl
(1993) Cribler les entiers sans grand facteur premier, in: R.C.Vaughan (ed.) Theory and applications of numbers without large prime factors, Phal. Trans. Royal l Soc. London, series A, to appear. | MR
On the maximal distance of numbers with a large prime factor, J. London Math. Soc. (2) 5, 313-320. | MR | Zbl
, (1972)(1973) On integers with many small prime factors, Compositio Math. 26, 319-330. | Numdam | MR | Zbl
(1974) On the maximal distance between integers composed of small primes, Compositio Math. 28, 159-162. | Numdam | MR | Zbl
Polynomials with small prime divisors (Russian), Taskent Gos. Univ. Naun. Trudy 548 Voprosy Mat., 87-91. | MR | Zbl
, (1977)The theory of the Riemann zeta function, Second Edition, Oxford Univ. Press, Oxford. | MR | Zbl
and , (1986)Prime divisors of polynomials at consecutive integers, J. Reine Angew. Math. 319, 142-152. | MR | Zbl
, (1980)(1982) Products of integers in short intervals, Report 8228M, Econometric Institut, Erasmus University, Rotterdam.
A new iterative method in Waring's problem, Acta Math. 162, 1-71. | MR | Zbl
, (1989)The asymptotic distribution of factorizations of natural numbers into prime divisors, Soviet Math. Dokl. 34, 57-61. | Zbl
, (1987)On a bound for the least nth power non-residue (Russian), Izv. Akad. Nauk SSSR 20, 47-58; English transl.: Trans. Amer. Math. Soc. 29 (1927), 218-226. | JFM
, (1926)Estimation and application of a character sum (Chinese), Shuzue Jinzhan 7, 78-83. | MR | Zbl
, (1964)Sieving by large prime factors, Monatshefte Math. 109, 247-256. | MR | Zbl
, (1990)(1991) Arithmetical semigroups, II: Sieving by large and small prime elements. Sets of multiples, Manuscripta Math. 71, 197-221. | MR | Zbl
Two differential-difference equations arising in number theory, Trans. Amer. Math. Soc. 318, 491-523. | MR | Zbl
, (1990)Polynomial values with small prime divisors, Acta Arith. 19, 327-333. | MR | Zbl
, (1971)(1973) Über die mittlere Verteilung der Werte zahlentheoretischer Funktionen auf Restklassen. I, Math. Ann. 202, 1-205. | MR | Zbl
Large improvements in Waring's problem, Annals Math.(2) 135, no 1, 135-164. | MR | Zbl
, (1992)On a problem of Erdös and Ivić, Publ. Inst. Math. (Beograd) (N. S.) 43 (57), 9-15. | MR | Zbl
, (1988)(1989a) On sums involving reciprocals of certain large additive functions. I, Publ. Inst. Math. (Beograd) (N. S.) 45 (59), 41-55. | MR | Zbl
(1989b) On sums involving reciprocals of certain large additive functions. II, Publ. Inst. Math. (Beograd) (N. S.) 46 (60), 25-32. | MR | Zbl
(1990) The average of dk(n) over integers free of large prime factors, Acta Arith. 55, 249-260. | MR | Zbl
(1991) The average of the divisor function over integers without large prime factors, Chinese Ann. of Math. Ser. A 12, 28-33. | MR | Zbl
(1993) On the asymptotic behavior of the DicZanan-de Bruijn function, Math. Ann. 297, 519-533. | MR | Zbl