Every real number , has an essentially unique expansion as a Pierce series :
@article{JTNB_1991__3_1_43_0,
author = {P. Erd\"os and J. O. Shallit},
title = {New bounds on the length of finite pierce and {Engel} series},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {43--53},
year = {1991},
publisher = {Universit\'e Bordeaux I},
volume = {3},
number = {1},
zbl = {0727.11003},
mrnumber = {1116100},
language = {en},
url = {https://jtnb.centre-mersenne.org/item/JTNB_1991__3_1_43_0/}
}
TY - JOUR AU - P. Erdös AU - J. O. Shallit TI - New bounds on the length of finite pierce and Engel series JO - Journal de théorie des nombres de Bordeaux PY - 1991 SP - 43 EP - 53 VL - 3 IS - 1 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1991__3_1_43_0/ LA - en ID - JTNB_1991__3_1_43_0 ER -
P. Erdös; J. O. Shallit. New bounds on the length of finite pierce and Engel series. Journal de théorie des nombres de Bordeaux, Tome 3 (1991) no. 1, pp. 43-53. https://jtnb.centre-mersenne.org/item/JTNB_1991__3_1_43_0/
1 , Bemerkungen zur Engleschen Darstellung reeler Zahlen, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 1 (1958), 143-151. | Zbl | MR
2 , L'encadrement asymptotique des elements de la série d'Engel d'un nombre réel, C. R. Acad. Sci. Paris 295 (1982), 21-24. | Zbl | MR
3 , Entwicklung der Zahlen nach Stammbrüchen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmänner in Marburg, 1913, pp. 190-191.
4 , , and , On Engel's and Sylvester's series, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 1 (1958), 7-32. | Zbl | MR
5 and , An Introduction to the Theory of Numbers, Oxford University Press, 1985. | MR
6 , Iterating the division algorithm, Fibonacci Quart. 25 (1987), 204-213. | Zbl | MR
7 , On an algorithm and its use in approximating roots of algebraic equations, Amer. Math. Monthly 36 (1929), 523-525. | MR | JFM
8 , On series with alternating signs which may be connected with two algorithms of M. V. Ostrogradskii for the approximation of irrational numbers, Uspekhi Mat. Nauk 6 (5) (1951), 33-42, (MR #13,444d). | Zbl | MR
9 , A new approach to the theory of Engel's series, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 5 (1962), 25-32. | Zbl | MR
10 and , Approxamate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94. | Zbl | MR
11 , Metric theory of Pierce expansions, Fibonacci Quart. 24 (1986), 22-40. | Zbl | MR
12 , Letter to the editor, Fibonacci Quart. 27 (1989), 186.
13 , O kilku algorytmach dla rozwijania liczb rzeczywistych na szeregi, C. R. Soc. Sci. Varsovie 4 (1911), 56-77, (In Polish; reprinted in French translation as Sur quelques algorithmes pour développer les nombres reéls en séries, in , Oeuvres Choisies, Vol. I, PWN, Warsaw, 1974, pp. 236-254.).
14 and , The metric theory of an algorithm of M. V. Ostrogradskij, Ukrain. Mat. Z. 27 (1975), 64-69. | Zbl | MR