Soit un corps de nombres. Dans ce travail nous calculons des majorants effectifs pour la taille des solutions en entiers algébriques de des équations, , où a au moins trois racines d’ordre impair, et où et a au moins deux racines d’ordre premier à . On améliore ainsi les estimations connues ([2],[9]) pour les solutions de ces équations en entiers algébriques de .
Let be a number field. In this work we give effective upper bounds for the size of solutions in algebraic integers of , of equations , where has at least three roots of odd order, and where has at least two roots of order prime to . We thus improve the known estimations ([2],[9]) for the solutions of these equations in algebraic integers of .
@article{JTNB_1991__3_1_187_0, author = {Dimitrios Poulakis}, title = {Solutions enti\`eres de l{\textquoteright}\'equation $Y^m = f(X)$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {187--199}, publisher = {Universit\'e Bordeaux I}, volume = {3}, number = {1}, year = {1991}, zbl = {0733.11009}, mrnumber = {1116106}, language = {fr}, url = {https://jtnb.centre-mersenne.org/item/JTNB_1991__3_1_187_0/} }
TY - JOUR AU - Dimitrios Poulakis TI - Solutions entières de l’équation $Y^m = f(X)$ JO - Journal de théorie des nombres de Bordeaux PY - 1991 SP - 187 EP - 199 VL - 3 IS - 1 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1991__3_1_187_0/ LA - fr ID - JTNB_1991__3_1_187_0 ER -
Dimitrios Poulakis. Solutions entières de l’équation $Y^m = f(X)$. Journal de théorie des nombres de Bordeaux, Tome 3 (1991) no. 1, pp. 187-199. https://jtnb.centre-mersenne.org/item/JTNB_1991__3_1_187_0/
[1] Bounds for the solutions of the hyperelliptic equation, Proc. Cambridge Phil. Soc. 65 (1969), 439-444. | Zbl
,[2] On S-integral solutions of the equation ym = f(x)., Acta Math. Hung. 44 (1984), 133-139. | Zbl
,[3] On the solutions of linear diophantine equations in Algebraic integers of bounded norm, Ann. Univ. Budapest Eotvos, Sect. Math. 22-23 (1979-80), 225-233. | Zbl
,[4] Fundamentals of Diophantine Geometry, Springer-Verlag (1983). | Zbl
,[5] Algebraic Number Theory, Addison Wesley (1970). | Zbl
,[6] Integer points on curves of genus 1 (à paraître).
,[7] Abschätzung von Einheiten, Nachr. Akd.Wiss Göttingen Math. Phys. K1 II (1969), 71-86. | Zbl
,[8] A hyperelliptic diophantine equation and class numbers (in Russian), Acta Arith. 30 (1976), 95-108. | Zbl
,[9] On S-integral solutions of the hyperelliptic equation (in Russian), Dokl.Akad. Nauk BSSR (1978), 881-884. | Zbl
,