Let
Soit
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1047
Keywords: elliptic curves, Hilbert modular forms, Galois representations
Sho Yoshikawa 1

@article{JTNB_2018__30_3_729_0, author = {Sho Yoshikawa}, title = {Modularity of elliptic curves over abelian totally real fields unramified at 3, 5, and 7}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {729--741}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {3}, year = {2018}, doi = {10.5802/jtnb.1047}, zbl = {1441.11135}, mrnumber = {3938624}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1047/} }
TY - JOUR AU - Sho Yoshikawa TI - Modularity of elliptic curves over abelian totally real fields unramified at 3, 5, and 7 JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 729 EP - 741 VL - 30 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1047/ DO - 10.5802/jtnb.1047 LA - en ID - JTNB_2018__30_3_729_0 ER -
%0 Journal Article %A Sho Yoshikawa %T Modularity of elliptic curves over abelian totally real fields unramified at 3, 5, and 7 %J Journal de théorie des nombres de Bordeaux %D 2018 %P 729-741 %V 30 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1047/ %R 10.5802/jtnb.1047 %G en %F JTNB_2018__30_3_729_0
Sho Yoshikawa. Modularity of elliptic curves over abelian totally real fields unramified at 3, 5, and 7. Journal de théorie des nombres de Bordeaux, Tome 30 (2018) no. 3, pp. 729-741. doi : 10.5802/jtnb.1047. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1047/
[1] Modularity of nearly ordinary 2-adic residually dihedral Galois representations, Compos. Math., Volume 150 (2014) no. 8, pp. 1235-1346 | DOI | MR | Zbl
[2] On the modularity of elliptic curves over
[3] Potential modularity - a survey (2010) (https://arxiv.org/abs/1101.0097) | Zbl
[4] Recipes to Fermat-type equations of the form
[5] Elliptic Curves over Real Quadratic Fields are Modular, Invent. Math., Volume 201 (2015) no. 1, pp. 159-206 | DOI | MR | Zbl
[6] Remarks on automorphy of residually dihedral representations (2016) (https://arxiv.org/abs/1607.04750) | Zbl
[7] Détermination du poids et du conducteur associés aux représentations des points de
[8] Modularity of some elliptic curves over totally real fields (2013) (https://arxiv.org/abs/1309.4134)
[9] On the parity of ranks of Selmer groups. IV, Compos. Math., Volume 145 (2009) no. 6, pp. 1351-1359 | DOI | MR | Zbl
[10] Good Reduction of Abelian Varieties, Ann. Math., Volume 88 (1968) no. 3, pp. 492-517 | DOI | MR | Zbl
[11] The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 106, Springer, 1986, xii+400 pages | MR | Zbl
[12] Nearly ordinary deformation of residually dihedral representations (preprint)
[13] Residually reducible representations and modular forms, Publ. Math., Inst. Hautes Étud. Sci., Volume 89 (1999), pp. 5-126 | Zbl
[14] Nearly ordinary deformations of irreducible residual representations, Ann. Fac. Sci. Toulouse, Math., Volume 10 (2001) no. 1, pp. 185-215 | DOI | Numdam | MR | Zbl
[15] Remarks on a conjecture of Fontaine and Mazur, J. Inst. Math. Jussieu, Volume 1 (2002) no. 1, pp. 125-143 | MR | Zbl
[16] Ring-theoretic properties of certain Hecke algebras, Ann. Math., Volume 141 (1995) no. 3, pp. 553-572 | DOI | MR | Zbl
[17] Automorphy of some residually dihedral Galois representations, Math. Ann., Volume 364 (2016) no. 1-2, pp. 589-648 | DOI | MR | Zbl
[18] Modular elliptic curves and Fermat’s Last Theorem, Ann. Math., Volume 141 (1995) no. 3, pp. 443-551 | DOI | MR | Zbl
- Modularity of elliptic curves over cyclotomic Zp-extensions of real quadratic fields, Journal of Number Theory, Volume 278 (2026), p. 510 | DOI:10.1016/j.jnt.2025.04.018
- The modularity of elliptic curves over all but finitely many totally real fields of degree 5, Research in Number Theory, Volume 8 (2022) no. 4 | DOI:10.1007/s40993-022-00383-0
- Reducible mod 105 representations and modularity of elliptic curves, Journal of Number Theory, Volume 228 (2021), p. 208 | DOI:10.1016/j.jnt.2021.04.008
Cité par 3 documents. Sources : Crossref