Principalization algorithm via class group structure
Journal de théorie des nombres de Bordeaux, Tome 26 (2014) no. 2, pp. 415-464.

Pour un corps de nombres algébriques K avec 3-groupe de classes Cl 3 (K) du type (3,3), la structure des 3-groupes de classes Cl 3 (N i ) des quatre extensions cubiques cycliques non-ramifiées N i , 1i4, de K est calculée à l’aide de présentations du groupe de Galois métabélien G 3 2 (K)=Gal(F 3 2 (K)|K) du deuxième 3-corps de classes de Hilbert F 3 2 (K) de K. Dans le cas d’un corps de base quadratique K=(D), il est montré que la structure des 3-groupes de classes des quatre S 3 -corps N 1 ,...,N 4 détermine fréquemment le type de principalisation de 3-groupe de classes de K dans N 1 ,...,N 4 . Ceci offre une alternative à l’algorithme de principalisation classique par Scholz et Taussky. Le nouvel algorithme qui est facilement automatisable et s’exécute très brièvement est implémenté en PARI/GP et est appliqué à tous les 4596 corps quadratiques K de 3-groupe de classes du type (3,3) et de discriminant -10 6 <D<10 7 pour obtenir des statistiques détaillées sur leurs types de principalisation et sur la distribution de leurs deuxièmes 3-groupes de classes G 3 2 (K) sur des arbres divers de coclasses des graphes de coclasses 𝒢(3,r), 1r6, dans le sens de Eick, Leedham-Green et Newman.

For an algebraic number field K with 3-class group Cl 3 (K) of type (3,3), the structure of the 3-class groups Cl 3 (N i ) of the four unramified cyclic cubic extension fields N i , 1i4, of K is calculated with the aid of presentations for the metabelian Galois group G 3 2 (K)=Gal(F 3 2 (K)|K) of the second Hilbert 3-class field F 3 2 (K) of K. In the case of a quadratic base field K=(D) it is shown that the structure of the 3-class groups of the four S 3 -fields N 1 ,...,N 4 frequently determines the type of principalization of the 3-class group of K in N 1 ,...,N 4 . This provides an alternative to the classical principalization algorithm by Scholz and Taussky. The new algorithm, which is easily automatizable and executes very quickly, is implemented in PARI/GP and is applied to all 4596 quadratic fields K with 3-class group of type (3,3) and discriminant -10 6 <D<10 7 to obtain extensive statistics of their principalization types and the distribution of their second 3-class groups G 3 2 (K) on various coclass trees of the coclass graphs 𝒢(3,r), 1r6, in the sense of Eick, Leedham-Green, and Newman.

DOI : 10.5802/jtnb.874
Classification : 11R29, 11R11, 11R16, 11R20, 20D15
Mots clés : $3$-class groups, principalization of $3$-classes, quadratic fields, cubic fields, $S_3$-fields, metabelian $3$-groups, coclass graphs
Daniel C. Mayer 1

1 Naglergasse 53 8010 Graz Austria
@article{JTNB_2014__26_2_415_0,
     author = {Daniel C. Mayer},
     title = {Principalization algorithm via class group structure},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {415--464},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {26},
     number = {2},
     year = {2014},
     doi = {10.5802/jtnb.874},
     mrnumber = {3320487},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.874/}
}
TY  - JOUR
AU  - Daniel C. Mayer
TI  - Principalization algorithm via class group structure
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2014
SP  - 415
EP  - 464
VL  - 26
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.874/
DO  - 10.5802/jtnb.874
LA  - en
ID  - JTNB_2014__26_2_415_0
ER  - 
%0 Journal Article
%A Daniel C. Mayer
%T Principalization algorithm via class group structure
%J Journal de théorie des nombres de Bordeaux
%D 2014
%P 415-464
%V 26
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.874/
%R 10.5802/jtnb.874
%G en
%F JTNB_2014__26_2_415_0
Daniel C. Mayer. Principalization algorithm via class group structure. Journal de théorie des nombres de Bordeaux, Tome 26 (2014) no. 2, pp. 415-464. doi : 10.5802/jtnb.874. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.874/

[1] E. Artin, Beweis des allgemeinen Reziprozitätsgesetzes, Abh. Math. Sem. Univ. Hamburg 5, (1927), 353–363. | MR

[2] E. Artin, Idealklassen in Oberkörpern und allgemeines Reziprozitätsgesetz. Abh. Math. Sem. Univ. Hamburg 7, (1929), 46–51. | MR

[3] J. Ascione, G. Havas, and C. R. Leedham-Green, A computer aided classification of certain groups of prime power order, Bull. Austral. Math. Soc. 17, (1977), 257–274, Corrigendum 317–319, Microfiche Supplement p. 320. | MR | Zbl

[4] J. Ascione, On 3-groups of second maximal class, Ph. D. Thesis, Australian National University, Canberra, (1979).

[5] J. Ascione, On 3-groups of second maximal class. Bull. Austral. Math. Soc., 21, (1980), 473–474. | Zbl

[6] G. Bagnera, La composizione dei gruppi finiti il cui grado è la quinta potenza di un numero primo, Ann. di Mat., (Ser. 3) 1, (1898), 137–228.

[7] K. Belabas, Topics in computational algebraic number theory. J. Théor. Nombres Bordeaux, 16, (2004), 19–63. | Numdam | MR | Zbl

[8] H. U. Besche, B. Eick, and E. A. O’Brien, The SmallGroups Library — a Library of Groups of Small Order, (2005), an accepted and refereed GAP 4 package, available also in MAGMA.

[9] N. Blackburn, On a special class of p-groups, Acta Math., 100, (1958), 45–92. | MR | Zbl

[10] N. Blackburn, On prime-power groups in which the derived group has two generators, Proc. Camb. Phil. Soc., 53, (1957), 19–27. | MR | Zbl

[11] J. R. Brink, The class field tower for imaginary quadratic number fields of type (3,3), Dissertation, Ohio State University, (1984).

[12] H. Dietrich, B. Eick, and D. Feichtenschlager, Investigating p-groups by coclass with GAP. Computational group theory and the theory of groups, Contemp. Math. 470, (2008), 45–61, AMS, Providence, RI. | MR | Zbl

[13] T. E. Easterfield, A classification of groups of order p 6 , Ph. D. Thesis, University of Cambridge, (1940).

[14] B. Eick and D. Feichtenschlager, Infinite sequences of p-groups with fixed coclass, arXiv: 1006.0961 v1 [math.GR], 4 June 2010.

[15] B. Eick and C. Leedham-Green, On the classification of prime-power groups by coclass. Bull. London Math. Soc., 40, (2008), 274–288. | MR | Zbl

[16] B. Eick, C.R. Leedham-Green, M.F. Newman, and E.A. O’Brien, On the classification of groups of prime-power order by coclass: The 3-groups of coclass 2, Int. J. Algebra Comput., 23, 5, (2013), 1243–1288. | MR | Zbl

[17] C. Fieker, Computing class fields via the Artin map, Math. Comp., 70, 235 (2001), 1293–1303. | MR | Zbl

[18] G. W. Fung and H. C. Williams, On the computation of a table of complex cubic fields with discriminant D>-10 6 , Math. Comp., 55, 191, (1990), 313–325. | MR | Zbl

[19] Ph. Furtwängler, Beweis des Hauptidealsatzes für die Klassenkörper algebraischer Zahlkörper, Abh. Math. Sem. Univ. Hamburg, 7, (1929), 14–36. | MR

[20] The GAP Group, GAP – Groups, Algorithms, and Programming — a System for Computational Discrete Algebra, Version 4.4.12, Aachen, Braunschweig, Fort Collins, St. Andrews, (2008), http://www.gap-system.org.

[21] P. Hall, A contribution to the theory of groups of prime-power order, Proc. London Math. Soc., (ser. 2) 36, (1933), 29–95. | MR | Zbl

[22] P. Hall, The classification of prime-power groups, J. Reine Angew. Math., 182, (1940), 130–141. | MR | Zbl

[23] F.-P. Heider und B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. Reine Angew. Math., 336, (1982), 1–25. | MR | Zbl

[24] R. James, The groups of order p 6 (p an odd prime), Math. Comp., 34, 150, (1980), 613–637. | MR | Zbl

[25] H. Kisilevsky, Some results related to Hilbert’s theorem 94, J. Number Theory, 2, (1970), 199–206. | MR | Zbl

[26] C. R. Leedham-Green and S. McKay, The structure of groups of prime power order, London Math. Soc. Monographs, New Series, 27, (2002) Oxford Univ. Press. | MR | Zbl

[27] C. R. Leedham-Green and M. F. Newman, Space groups and groups of prime power order I, Arch. Math., 35, (1980), 193–203. | MR | Zbl

[28] P. Llorente and J. Quer, On totally real cubic fields with discriminant D<10 7 , Math. Comp., 50,182, (1988), 581–594. | MR | Zbl

[29] D. C. Mayer, Principalization in complex S 3 -fields, Congressus Numerantium, 80, (1991), 73–87. (Proceedings of the Twentieth Manitoba Conference on Numerical Mathematics and Computing, Winnipeg, Manitoba, Canada, 1990). | MR | Zbl

[30] D. C. Mayer, List of discriminants d L <200000 of totally real cubic fields L, arranged according to their multiplicities m and conductors f, Computer Centre, Department of Computer Science, University of Manitoba, Winnipeg, Canada, (1991).

[31] D. C. Mayer, The second p-class group of a number field, Int. J. Number Theory, 8, 2, (2012), 471–505, DOI 10.1142/S179304211250025X. | MR | Zbl

[32] D. C. Mayer, Transfers of metabelian p-groups, Monatsh. Math., 166, 3–4, (2012), 467–495, DOI 10.1007/s00605-010-0277-x. | MR | Zbl

[33] D. C. Mayer, Multiplicities of dihedral discriminants, Math. Comp., 58, 198, (1992), 831–847 and S55–S58. | MR | Zbl

[34] D. C. Mayer, The distribution of second p-class groups on coclass graphs, J. Théor. Nombres Bordeaux, 25, 2, (2013), 401–456. (27th Journées Arithmétiques, Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania, 2011). | Numdam | MR | Zbl

[35] D. C. Mayer, Metabelian 3-groups with abelianization of type (9,3), Preprint, (2011).

[36] R. J. Miech, Metabelian p-groups of maximal class, Trans. Amer. Math. Soc., 152, (1970), 331–373. | MR | Zbl

[37] B. Nebelung, Klassifikation metabelscher 3-Gruppen mit Faktorkommutatorgruppe vom Typ (3,3) und Anwendung auf das Kapitulationsproblem, Inauguraldissertation, Band 1, Universität zu Köln, (1989).

[38] B. Nebelung, Anhang zu Klassifikation metabelscher 3-Gruppen mit Faktorkommutatorgruppe vom Typ (3,3) und Anwendung auf das Kapitulationsproblem, Inauguraldissertation, Band 2, Universität zu Köln, (1989).

[39] The PARI Group, PARI/GP computer algebra system, Version 2.3.4, Bordeaux, (2008), http://pari.math.u-bordeaux.fr.

[40] A. Scholz, Idealklassen und Einheiten in kubischen Körpern, Monatsh. Math. Phys., 40, (1933), 211–222. | MR | Zbl

[41] A. Scholz und O. Taussky, Die Hauptideale der kubischen Klassenkörper imaginär quadratischer Zahlkörper: ihre rechnerische Bestimmung und ihr Einfluß auf den Klassenkörperturm, J. Reine Angew. Math., 171, (1934), 19–41. | Zbl

[42] O. Schreier, Über die Erweiterung von Gruppen II, Abh. Math. Sem. Univ. Hamburg, 4, (1926), 321–346. | MR

[43] O. Taussky, A remark concerning Hilbert’s Theorem 94, J. Reine Angew. Math., 239/240, (1970), 435–438. | MR | Zbl

[44] G. F. Voronoĭ, O tselykh algebraicheskikh chislakh zavisyashchikh ot kornya uravneniya tretʼeĭ stepeni, Sanktpeterburg, Master’s Thesis (Russian), (1894). Engl. transl. of title: Concerning algebraic integers derivable from a root of an equation of the third degree.

[45] G. F. Voronoĭ, Ob odnom obobshchenii algorifma nepreryvnykh drobeĭ. Varshava, Doctoral Dissertation (Russian), (1896). Engl. transl. of title: On a generalization of the algorithm of continued fractions, Summary (by Wassilieff): Jahrb. Fortschr. Math. 27, (1896), 170–174.

Cité par Sources :