Soit
Let
@article{JTNB_2008__20_1_23_0, author = {Keisuke Arai}, title = {On uniform lower bound of the {Galois} images associated to elliptic curves}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {23--43}, publisher = {Universit\'e Bordeaux 1}, volume = {20}, number = {1}, year = {2008}, doi = {10.5802/jtnb.614}, mrnumber = {2434156}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.614/} }
TY - JOUR AU - Keisuke Arai TI - On uniform lower bound of the Galois images associated to elliptic curves JO - Journal de théorie des nombres de Bordeaux PY - 2008 SP - 23 EP - 43 VL - 20 IS - 1 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.614/ DO - 10.5802/jtnb.614 LA - en ID - JTNB_2008__20_1_23_0 ER -
%0 Journal Article %A Keisuke Arai %T On uniform lower bound of the Galois images associated to elliptic curves %J Journal de théorie des nombres de Bordeaux %D 2008 %P 23-43 %V 20 %N 1 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.614/ %R 10.5802/jtnb.614 %G en %F JTNB_2008__20_1_23_0
Keisuke Arai. On uniform lower bound of the Galois images associated to elliptic curves. Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 1, pp. 23-43. doi : 10.5802/jtnb.614. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.614/
[1] P. Deligne, M. Rapoport, Les schémas de modules de courbes elliptiques. Modular functions of one variable, II, 143–316. Lecture Notes in Math. 349. Springer, Berlin, 1973. | MR | Zbl
[2] B. Edixhoven, Rational torsion points on elliptic curves over number fields (after Kamienny and Mazur). Séminaire Bourbaki, Vol. 1993/94. Astérisque No. 227 (1995), Exp. No. 782, 4, 209–227. | Numdam | MR | Zbl
[3] G. Faltings, Finiteness theorems for abelian varieties over number fields. Translated from the German original [Invent. Math. 73 (1983), no. 3, 349–366; ibid. 75 (1984), no. 2, 381] by Edward Shipz. Arithmetic geometry (Storrs, Conn., 1984), 9–27. Springer, New York, 1986. | MR | Zbl
[4] S. Kamienny, Torsion points on elliptic curves and
[5] N. Katz, B. Mazur, Arithmetic moduli of elliptic curves. Annals of Mathematics Studies 108. Princeton University Press, Princeton, NJ, 1985. | MR | Zbl
[6] D.-S. Kubert, Universal bounds on the torsion of elliptic curves. Proc. London Math. Soc. (3) 33 (1976), no. 2, 193–237. | MR | Zbl
[7] J. Manin, The
[8] B. Mazur, Modular curves and the Eisenstein ideal. Publ. Math. Inst. Hautes Études Sci. 47 (1977), 33–186. | Numdam | MR | Zbl
[9] B. Mazur, Rational points on modular curves. Modular functions of one variable V, 107–148. Lecture Notes in Math. 601. Springer, Berlin, 1977. | MR | Zbl
[10] B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld). Invent. Math. 44 (1978), no. 2, 129–162. | MR | Zbl
[11] L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124 (1996), no. 1-3, 437–449. | MR | Zbl
[12] F. Momose, Rational points on the modular curves
[13] F. Momose, Isogenies of prime degree over number fields. Compositio Math. 97 (1995), no. 3, 329–348. | Numdam | MR | Zbl
[14] K. Nakata, On the
[15] P. Parent, Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres. J. Reine Angew. Math. 506 (1999), 85–116. | MR | Zbl
[16] P. Parent, Towards the triviality of
[17] M. Rebolledo, Module supersingulier, formule de Gross-Kudla et points rationnels de courbes modulaires. To appear in Pacific J. Math. | MR
[18] J.-P. Serre, Abelian
[19] J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15 (1972), no. 4, 259–331. | Zbl
[20] J.-P. Serre, Représentations
[21] J.-P. Serre, Points rationnels des courbes modulaires
[22] G. Shimura, Introduction to the arithmetic theory of automorphic functions. Princeton University Press, Princeton, NJ, 1994. | MR | Zbl
[23] J. Silverman, The arithmetic of elliptic curves. Graduate Texts in Mathematics 106. Springer-Verlag, New York, 1986. | MR | Zbl
- Typically bounding torsion on elliptic curves isogenous to rational
-invariant, Proceedings of the American Mathematical Society, Volume 151 (2023) no. 5, pp. 1907-1914 | DOI:10.1090/proc/16298 | Zbl:1525.11063 - Effective Kummer Theory for Elliptic Curves, International Mathematics Research Notices, Volume 2022 (2022) no. 22, p. 17662 | DOI:10.1093/imrn/rnab216
- Some uniform bounds for elliptic curves over
, Pacific Journal of Mathematics, Volume 320 (2022) no. 1, pp. 133-175 | DOI:10.2140/pjm.2022.320.133 | Zbl:1526.11026 - Boundedness results for 2-adic Galois images associated to hyperelliptic Jacobians, Mathematische Nachrichten, Volume 294 (2021) no. 8, pp. 1629-1643 | DOI:10.1002/mana.201800244 | Zbl:1521.14058
-
-curves over odd degree number fields, Research in Number Theory, Volume 7 (2021) no. 4, p. 30 (Id/No 62) | DOI:10.1007/s40993-021-00270-0 | Zbl:1483.11112 - Pursuing polynomial bounds on torsion, Israel Journal of Mathematics, Volume 227 (2018) no. 2, pp. 889-909 | DOI:10.1007/s11856-018-1751-8 | Zbl:1423.14162
- Uniform boundedness in terms of ramification, Research in Number Theory, Volume 4 (2018) no. 1, p. 39 (Id/No 6) | DOI:10.1007/s40993-018-0095-0 | Zbl:1439.11137
- On the Calculation of the Number of Galois Orbits, Kyungpook mathematical journal, Volume 56 (2016) no. 4, p. 1135 | DOI:10.5666/kmj.2016.56.4.1135
- Elliptic curves over
and 2-adic images of Galois, Research in Number Theory, Volume 1 (2015), p. 34 (Id/No 12) | DOI:10.1007/s40993-015-0013-7 | Zbl:1397.11095 - A uniform open image theorem for
-adic representations. I, Duke Mathematical Journal, Volume 161 (2012) no. 13, pp. 2605-2634 | DOI:10.1215/00127094-1812954 | Zbl:1305.14016 - Averages of elliptic curve constants, Mathematische Annalen, Volume 345 (2009) no. 3, pp. 685-710 | DOI:10.1007/s00208-009-0373-1 | Zbl:1177.14067
- On the Galois images associated to QM-abelian surfaces, RIMS Kôkyûroku Bessatsu, Volume B4 (2007), pp. 165-187 | Zbl:1211.11070
Cité par 12 documents. Sources : Crossref, zbMATH