The Bloch-Kato conjecture on special values of L-functions. A survey of known results
Journal de théorie des nombres de Bordeaux, Volume 15 (2003) no. 1, pp. 179-198.

This paper contains an overview of the known cases of the Bloch-Kato conjecture. It does not attempt to overview the known cases of the Beilinson conjecture and also excludes the Birch and Swinnerton-Dyer point. The paper starts with a brief review of the formulation of the general conjecture. The final part gives a brief sketch of the proofs in the known cases.

Cet article présente un survol des cas connus de la conjecture de Bloch-Kato. Nous ne cherchons pas à passer en revue tous les cas connus de la conjecture de Beilinson, et nous laissons de côté la conjecture de Birch et Swinnerton-Dyer. L'article commence par une description de la conjecture générale. À la fin, nous indiquons brièvement les démonstrations des cas connus.

@article{JTNB_2003__15_1_179_0,
     author = {Guido Kings},
     title = {The {Bloch-Kato} conjecture on special values of $L$-functions. {A} survey of known results},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {179--198},
     publisher = {Universit\'e Bordeaux I},
     volume = {15},
     number = {1},
     year = {2003},
     doi = {10.5802/jtnb.396},
     zbl = {1050.11063},
     mrnumber = {2019010},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.396/}
}
TY  - JOUR
TI  - The Bloch-Kato conjecture on special values of $L$-functions. A survey of known results
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2003
DA  - 2003///
SP  - 179
EP  - 198
VL  - 15
IS  - 1
PB  - Université Bordeaux I
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.396/
UR  - https://zbmath.org/?q=an%3A1050.11063
UR  - https://www.ams.org/mathscinet-getitem?mr=2019010
UR  - https://doi.org/10.5802/jtnb.396
DO  - 10.5802/jtnb.396
LA  - en
ID  - JTNB_2003__15_1_179_0
ER  - 
%0 Journal Article
%T The Bloch-Kato conjecture on special values of $L$-functions. A survey of known results
%J Journal de théorie des nombres de Bordeaux
%D 2003
%P 179-198
%V 15
%N 1
%I Université Bordeaux I
%U https://doi.org/10.5802/jtnb.396
%R 10.5802/jtnb.396
%G en
%F JTNB_2003__15_1_179_0
Guido Kings. The Bloch-Kato conjecture on special values of $L$-functions. A survey of known results. Journal de théorie des nombres de Bordeaux, Volume 15 (2003) no. 1, pp. 179-198. doi : 10.5802/jtnb.396. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.396/

[1] F. Bars, On the Tamagawa number conjecture for CM elliptic curves defined over Q. J. Number Theory 95 (2002), 190-208. | MR | Zbl

[2] A. Beilinson, Higher regulators and values of L-functions. Jour. Soviet. Math. 30 (1985), 2036-2070. | Zbl

[3] J.-R. Belliard, T. Nguyen Quang Do, Formules de classes pour les corps abéliens réels. Ann. Inst. Fourier (Grenoble) 51 (2001), 907-937. | Numdam | MR | Zbl

[4] D. Benois, T. Nguyen Quang Do, La conjecture de Bloch et Kato pour les motifs Q(m) sur un corps abélien. Ann. Sci. Ecole Norm. Sup. 35 (2002), 641-672. | Numdam | MR | Zbl

[5] S. Bloch, K. Kato, L-functions and Tamagawa numbers of motives. The Grothendieck Festschrift, Vol. I, 333-400, Progr. Math., 86, Birkhäuser Boston, Boston, MA, 1990. | MR | Zbl

[6] D. Burns, C. Greither, On the equivariant Tamagawa number conjecture for Tate motives, preprint, 2000.

[7] D. Burns, M. Flach, Tamagawa numbers for motives with non-commutative coefficients. Doc. Math. 6 (2001), 501-570. | MR | Zbl

[8] P. Deligne, Valeurs de fonctions L et périodes d'intégrales. Proc. Sympos. Pure Math., XXXIII, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, pp. 313-346, Amer. Math. Soc., Providence, R.I., 1979. | MR | Zbl

[9] C. Deninger, Higher regulators and Hecke L-series of imaginary quadratic fields I. Invent. Math. 96 (1989), 1-69. | MR | Zbl

[10] C. Deninger, Higher regulators and Hecke L-series of imaginary quadratic fields II. Ann. Math. 132 (1990), 131-158. | MR | Zbl

[11] F. Diamond, M. Flach, L. Guo, Adjoint motives of modular forms and the Tamagawa number conjecture, preprint, 2001.

[12] H. Esnault, On the Loday symbol in the Deligne-Beilinson cohomology. K-theory 3 (1989), 1-28. | MR | Zbl

[13] J.-M. Fontaine, Valeurs spéciales des fonctions L des motifs. Séminaire Bourbaki, Vol. 1991/92. Astérisque No. 206, (1992), Exp. No. 751, 4, 205-249. | Numdam | MR | Zbl

[14] J.-M. Fontaine, B. Perrin-Riou, Autour des conjectures de Bloch et Kato, cohomologie galoisienne et valeurs de fonctions L. Motives (Seattle, WA, 1991), 599-706, Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994. | MR | Zbl

[15] C. Goldstein, N. Schappacher, Conjecture de Deligne et Γ-hypothese de Lichtenbaum sur les corps quadratiques imaginaires. C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 615-618. | Zbl

[16] L. Guo, On the Bloch-Kato conjecture for Hecke L-functions. J. Number Theory 57 (1996), 340-365. | MR | Zbl

[17] M. Harrison, On the conjecture of Bloch-Kato for Grössencharacters over Q(i). Ph.D. Thesis, Cambridge University, 1993.

[18] A. Huber, G. Kings, Degeneration of l-adic Eisenstein classes and of the elliptic poylog. Invent. Math. 135 (1999), 545-594. | MR | Zbl

[19] A. Huber, G. Kings, Bloch-Kato conjecture and main conjecture of Iwasawa theory for Dirichlet characters, to appear in Duke Math. J. | MR | Zbl

[20] A. Huber, J. Wildeshaus, Classical motivic polylogarithm according to Beilinson and Deligne. Doc. Math. J. DMV 3 (1998), 27-133. | MR | Zbl

[21] U. Jannsen, Deligne homology, Hodge-D-conjecture, and motives. In: Rapoport et al (eds.): Beilinson's conjectures on special values of L-functions. Academic Press, 1988. | MR | Zbl

[22] U. Jannsen, On the l-adic cohomology of varieties over number fields and its Galois cohomology. In: Ihara et al. (eds.): Galois groups over Q, MSRI Publication, 1989. | MR | Zbl

[23] K. Kato, Iwasawa theory and p-adic Hodge theory. Kodai Math. J. 16 (1993), no. 1, 1-31. | MR | Zbl

[24] K. Kato, Lectures on the approach to Iwasawa theory for Hasse- Weil L-functions via BdR I. Arithmetic algebraic geometry (Trento, 1991), 50-163, Lecture Notes in Math. 1553, Springer, Berlin, 1993. | MR | Zbl

[25] K. Kato, Lectures on the approach to Iwasawa theory of Hasse-Weil L-functions vis BdR, Part II, unpublished preprint, 1993. | MR

[26] K. Kato, Euler systems, Iwasawa theory, and Selmer groups. Kodai Math. J. 22 (1999), 313-372. | MR | Zbl

[27] G. Kings, The Tamagawa number conjecture for CM elliptic curves. Invent. math. 143 (2001), 571-627. | MR | Zbl

[28] G. Kings, Higher regulators, Hilbert modular surfaces and special values of L-functions. Duke Math. J. 92 (1998), 61-127. | MR | Zbl

[29] M. Kolster, Th. Nguyen Quang Do, Universal distribution lattices for abelian number fields, preprint, 2000.

[30] M. Kolster, Th. Nguyen Quang Do, V. Fleckinger, Twisted S-units, p-adic class number formulas, and the Lichtenbaum conjectures. Duke Math. J. 84 (1996), no. 3, 679-717. Correction: Duke Math. J. 90 (1997), no. 3, 641-643. | MR | Zbl

[31] K. Kunnemann, On the Chow motive of an Abelian Scheme. Motives (Seattle, WA, 1991), 189-205, Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994. | MR | Zbl

[32] Y.I. Manin, Correspondences, motives and monoidal transformations. Mat. Sbor. 77, AMS Transl. (1970), 475-507. | Zbl

[33] B. Mazur, A. Wiles, Class fields of abelian extensions of Q. Invent. Math. 76 (1984), 179-330. | MR | Zbl

[34] J. Nekovar, Beilinson's conjectures. Motives (Seattle, WA, 1991), 537-570, Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994. | MR | Zbl

[35] J. Neukirch, The Beilinson conjecture for algebraic number fields, in: M. Rapoport et al. (eds.): Beilinson's conjectures on Special Values of L-functions, Academic Press, 1988. | MR | Zbl

[36] K. Rubin, Euler systems. Annals of Mathematics Studies, 147, Princeton University Press, Princeton, NJ, 2000. | MR | Zbl

[37] A.J. Scholl, Motives for modular forms. Invent. math. 100 (1990), 419-430. | MR | Zbl

[38] A. Wiles, The Iwasawa main conjecture for totally real fields. Ann. Math. 131 (1990), 493-540. | MR | Zbl

Cited by Sources: