Let be an algebraic number field given by the minimal polynomial of . We want to determine all subfields of given degree. It is convenient to describe each subfield by a pair such that is the minimal polynomial of . There is a bijection between the block systems of the Galois group of and the subfields of . These block systems are computed using cyclic subgroups of the Galois group which we get from the Dedekind criterion. When a block system is known we compute the corresponding subfield using -adic methods. We give a detailed description for all parts of the algorithm.
Soit un corps de nombres défini par le polynôme minimal de . Nous nous intéressons à déterminer les sous-corps de degré donné. Chaque sous-corps est décrit en donnant le polynôme minimal de et le plongement de dans donné par un polynôme tel que . Il y a une bijection entre les systèmes de blocs du groupe de Galois de et les sous-corps de . Ces systèmes de blocs sont calculés en utilisant les sous-groupes cycliques du groupe de Galois qui sont obtenus à partir du critère de Dedekind. Lorsqu’un système de blocs est connu, on calcule le sous-corps correspondants par des méthodes -adiques. Nous présentons ici une description détaillée de l’algorithme.
@article{JTNB_1998__10_2_243_0,
author = {J\"urgen Kl\"uners},
title = {On computing subfields. {A} detailed description of the algorithm},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {243--271},
year = {1998},
publisher = {Universit\'e Bordeaux I},
volume = {10},
number = {2},
doi = {10.5802/jtnb.227},
zbl = {0935.11047},
mrnumber = {1828244},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.227/}
}
TY - JOUR AU - Jürgen Klüners TI - On computing subfields. A detailed description of the algorithm JO - Journal de théorie des nombres de Bordeaux PY - 1998 SP - 243 EP - 271 VL - 10 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.227/ DO - 10.5802/jtnb.227 LA - en ID - JTNB_1998__10_2_243_0 ER -
%0 Journal Article %A Jürgen Klüners %T On computing subfields. A detailed description of the algorithm %J Journal de théorie des nombres de Bordeaux %D 1998 %P 243-271 %V 10 %N 2 %I Université Bordeaux I %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.227/ %R 10.5802/jtnb.227 %G en %F JTNB_1998__10_2_243_0
Jürgen Klüners. On computing subfields. A detailed description of the algorithm. Journal de théorie des nombres de Bordeaux, Tome 10 (1998) no. 2, pp. 243-271. doi: 10.5802/jtnb.227
[1] , , , Ideal decompositions and subfields. J. Symbolic Comput. 21 (1996), 133-137. | MR | Zbl
[2] , Local Fields. Cambridge University Press, 1986. | MR | Zbl
[3] , , A polynomial reduction algorithm. Sem. Theor. Nombres Bordeaux (2) 3 (1991), no. 2, 351-360. | Numdam | MR | Zbl
[4] Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics, 138. Springer-Verlag, Berlin, 1993. | MR | Zbl
[5] , , Efficient rational number reconstruction. J. Symbolic Comput 20 (1995), 287-297. | MR | Zbl
[6] , , , , , , KANT V4. J. Symbolic Comput. 24 (1997), 267-283. | MR | Zbl
[7] , , Imprimitive ninth-degree number fields with small discriminants. Math. Comput. 64 (1995), no. 209, 305-321. | MR | Zbl
[8] , Computing subfields in algebraic number fields. J. Austral. Math. Soc. Ser. A 49 (1990), 434-448. | MR | Zbl
[9] , Block systems of a Galois group. Experiment. Math. 4 (1995), no. 1, 1-9. | MR | Zbl
[10] , Über die Berechnung von Teilkörpern algebraischer Zahlkörper. Diplomarbeit, Technische Universität Berlin, 1995.
[11] , Über die Berechnung von Automorphismen und Teilkörpern algebraischer Zahlkörper. Dissertation, Technische Universität Berlin, 1997. | Zbl
[12] , On computing subfields. J. Symbolic Comput. 24 (1997), 385-397. | MR | Zbl
[13] , Factoring polynomials over algebraic number fields. SIAM J. Comput. 14 (1985), no. 1, 184-195. | MR | Zbl
[14] , , Solvability by radicals is in polynomial time. J. Comput. System Sci. 30 (1985), no. 2, 179-208. | MR | Zbl
[15] , , Computing subfields: Reverse of the primitive element problem. In A. Galligo F. Eyssete, editor, MEGA-92, Computational algebraic geometry, volume 109, pages 163-176. Birkhäuser, Boston, 1993. | MR | Zbl
[16] , An inequality about factors of polynomials. Math. Comput. 28 (1974), no. 128, 1153-1157. | MR | Zbl
[17] , Elementary and Analytic Theory of Algebraic Numbers. Springer-Verlag, 1990. | MR | Zbl
[18] , , Algorithmic Algebraic Number Theory. Encyclopedia of Mathematics and its Applications, 30. Cambridge University Press, Cambridge 1989 | MR | Zbl
[19] , , Factoring polynomials over algebraic number fields. ACM Trans. Math. Software 2 (1976), no. 4, 335-350. | MR | Zbl
[20] , Finite Permutation Groups. Academic Press, New York-London 1964. | MR | Zbl
Cité par Sources :